5-Aminolevulinic acid (5-ALA) is a non-proteinogenic amino acid which has involved in heme metabolism of organisms, and has been widely applied in agriculture, and medical fields nowadays. 5-ALA is used in the elimination of pathogens or cancer cells by photodynamic therapy (PDT) owing to the photosensitizer reaction which releases the reactive oxygen species (ROS). Currently, biofabrication of 5-ALA is regarded as the most efficient and eco-friendly approach, but the complicated ingredient of medium causes the nuisance process of purification, resulting in low recovery and high producing cost. In this study, hydrogen chloride, sodium acetate, and ammonia were examined to maximize the recovery of 5-ALA from ion-exchange chromatography (IEC), thus a 92% recovery in 1 M ammonia at pH 9.5 was obtained. Afterward, the activated carbon was used for decolorization to further remove the pigments from the eluent. Four organic solvents, i.e., diethyl ether, methanol, ethanol, and acetone were compared to extract and form 5-ALA precipitation. The purified 5-ALA was verified to eliminate 74% of A549 human lung cancer and 83% of A375 melanoma skin cancer cell. Moreover, Proteus hauseri, Aeromonas hydrophila, Bacillus cereus, and Staphylococcus aureus were killed via anti-microbial PDT with 1% 5-ALA and reached 100% killing rate at optimal condition. With the addition of 0.05% 5-ALA during the culture, the growth of microalgae Chlorella sorokiniana was improved to against a common aquatic pathogen, A. hydrophila. The broad application of 5-ALA was demonstrated in this study for the first time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10992327PMC
http://dx.doi.org/10.1186/s40643-022-00557-9DOI Listing

Publication Analysis

Top Keywords

5-ala
9
5-aminolevulinic acid
8
photodynamic therapy
8
pathogens cancer
8
cancer cells
8
purification biofabrication
4
biofabrication 5-aminolevulinic
4
acid photodynamic
4
therapy pathogens
4
cancer
4

Similar Publications

Introduction: 5-aminolevulinic acid (5-ALA) fluorescence used in glioma surgery has different intensities within tumors and among different patients, some molecular and external factors have been implicated, but there is no clear evidence analyzing the difference of fluorescence according to glioma molecular characteristics. This study aimed to compare molecular factors of glioma samples with fluorescence intensity to identify potential cofounders and associations with clinically relevant tumor features.

Methods: Tumor samples of high-grade glioma patients operated using 5-ALA for guided resection were included for comparative analysis of fluorescence intensity and molecular features.

View Article and Find Full Text PDF

Boosting porphyrin synthesis and ALA-mediated photoinactivation through near-infrared therapy.

Photochem Photobiol

January 2025

Laboratorio de Terapias Fotoasistidas, Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas José de San Martín and CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.

Photodynamic inactivation (PDI) combines the use of photosensitizers with visible light to produce reactive oxygen species that effectively eliminate pathogens. To investigate the impact of near- infrared therapy (NIRT) on heme biosynthesis and permeability of the pro-photosensitizers 5-aminolevulinic acid (ALA) and Hexyl-ALA (H-ALA) through biofilms, we applied sub-lethal conditions for both NIRT and PDI to maintain intact bacterial viability. During NIRT, the temperature remained below 37°C, permitting rapid heating (ΔT = 11°C) without causing thermal damage.

View Article and Find Full Text PDF

In situ vaccine (ISV) can activate the anti-tumor immune system by inducing immunogenic cell death (ICD) at the tumor site. However, the development of tumor ISV still faces challenges due to insufficient tumor antigens released by tumor cells and the existence of tumor immunosuppressive microenvironment (TIME). Targeting the STING pathway has been reported to enhance the adjuvant effects of in situ tumor vaccines by initiating innate immunity.

View Article and Find Full Text PDF

Introduction: Tomato fruit are rich in -aminobutyric acid (GABA), which lowers blood pressure and improves sleep. An increase in GABA content is important for enhancing the nutritional quality of tomato fruit.

Methods: To investigate the effects of 5-aminolevulinic acid (ALA) on fruit quality and GABA synthesis in greenhouse tomatoes, the tomato cultivar ( cv.

View Article and Find Full Text PDF

p-Coumaric acid (p-CA), an invaluable phytochemical, has novel bioactivities, including antiproliferative, anxiolytic, and neuroprotective effects, and is the main precursor of various flavonoids, such as caffeic acid, naringenin, and resveratrol. Herein, we report the engineering of Escherichia coli for de novo production of p-CA via the PAL-C4H pathway. As the base strain, we used the E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!