Bispecific antibodies (bsAbs) are therapeutically promising due to their ability to bind to two different antigens. However, the bsAb byproducts and impurities, including mispaired homodimers, half-antibodies, light chain mispairings, antibody fragments and high levels of high molecular weight (HMW) species, all pose unique challenges to their downstream processing. Here, using two knob-into-hole (KiH) constructs of bsAbs as model molecules, we demonstrate the excellent removal of bsAb byproducts and impurities in a single Protein A chromatography under optimized conditions, including hole-hole homodimer mispaired products which are physicochemically very similar to the target bsAbs and still present even with the use of the KiH format, though at reduced levels. The removal occurs through the incorporation of an intermediate low-pH wash step and optimal elution conditions, achieving ~ 60% monomeric purity increase in a single Protein A step, without the introduction of sequence-specific bsAb modifications to specifically induce differential Protein A binding. Our results also suggest that the higher aggregation propensity of bsAbs may cause aggregation during the column process, hence an optimization of the appropriate loading amount, which may be lower than that of monoclonal antibodies (mAbs), is required. With the use of loading at 50% of 10% breakthrough (QB10) at 6-min residence time, we show that an overall high monomer purity of 92.1-93.2% can be achieved with good recovery of 78.4-90.6% within one capture step, which is a significant improvement from a monomer purity of ~ 30% in the cell culture supernatant (CCS). The results presented here would be an insightful guidance to all researchers working on the purification process development to produce bispecific antibodies, especially for knob-into-hole bispecific antibodies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10992212 | PMC |
http://dx.doi.org/10.1186/s40643-022-00562-y | DOI Listing |
Polymers (Basel)
January 2025
Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
Crude glycerol (CG), a major biodiesel production by-product, is the focus of ongoing research to convert it into polyhydroxyalkanoate (PHA). However, few bacterial strains are capable of efficiently achieving this conversion. Here, 10 PHA-producing strains were isolated from various media.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China.
Dynamic high-pressure microfluidization (DHPM) is an emerging treatment technology and has been widely used for the recovery of natural polysaccharides. The aim of the present contribution is to discuss the DHPM-assisted extraction and processing of polysaccharides from some foods and by-products by reviewing the instrument and working principle, procedures, key parameters, and effects of DHPM on the structures, food properties, and bioactivities of resulting polysaccharides. It was found that a DHPM instrument with Z-type chamber is preferable for extracting polysaccharides, and a DHPM with Y-type chamber is applicable for processing polysaccharides.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran.
This study details the synthesis of a novel ternary nanocomposite composed of MnFeO, FeVO, and modified zeolite, achieved through a two-step process. The initial step involved the hydrothermal synthesis of the MnFeO/FeVO composite, followed by its application onto modified zeolite using ultrasonic waves. The synthesized nanocomposite was thoroughly characterized using a range of analytical techniques.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Laboratoire d'Energétique et des Transferts Thermique et Massique (LETTM), Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El-Manar, El Manar, Tunis 2092, Tunisia.
The viability of using fibers as reinforcement material for developing lightweight sustainable non-structural construction materials in compliance with the valorization of local by-products has been investigated in this work. This study aims to investigate the effect of the chemical treatment of fibers on the mechanical and hygric properties of bio-sourced clay-sand- fiber composite. This lightweight specimen has been produced from a mixture of 60% natural clay and 40% sand by mass, as a matrix, and reinforced with different amounts of Juncus fibers.
View Article and Find Full Text PDFMolecules
December 2024
Faculty of Non-Ferrous Metals, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland.
Gallium, a critical and strategic material for advanced technologies, is anomalously enriched in certain coal deposits and coal by-products. Recovering gallium from solid residues generated during coal production and utilization can yield economic benefits and positive environmental gains through more efficient waste processing. This systematic literature review focuses on gallium concentrations in coal and its combustion or gasification by-products, modes of occurrence, gallium-hosting phases, and hydrometallurgical recovery methods, including pretreatment procedures that facilitate metal release from inert aluminosilicate minerals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!