Tissue-mimicking phantoms are valuable tools that aid in improving the equipment and training available to medical professionals. However, current phantoms possess limited utility due to their inability to precisely simulate multiple physical properties simultaneously, which is crucial for achieving a system understanding of dynamic human tissues. In this work, novel materials design and fabrication processes to produce various tissue-mimicking materials (TMMs) for skin, adipose, muscle, and soft tissue at a human scale are developed. Target properties (Young's modulus, density, speed of sound, and acoustic attenuation) are first defined for each TMM based on literature. Each TMM recipe is developed, associated mechanical and acoustic properties are characterized, and the TMMs are confirmed to have comparable mechanical and acoustic properties with the corresponding human tissues. Furthermore, a novel sacrificial core to fabricate a hollow, ellipsoid-shaped bladder phantom complete with inlet and outlet tubes, which allow liquids to flow through and expand this phantom, is adopted. This dynamic bladder phantom with realistic mechanical and acoustic properties to human tissues in combination with the developed skin, soft tissue, and subcutaneous adipose tissue TMMs, culminates in a human scale torso tank and electro-mechanical system that can be systematically utilized for characterizing various medical imaging devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165531PMC
http://dx.doi.org/10.1002/advs.202400271DOI Listing

Publication Analysis

Top Keywords

mechanical acoustic
16
acoustic properties
16
human tissues
12
soft tissue
8
human scale
8
bladder phantom
8
properties
6
acoustic
5
human
5
dynamic ultrasound
4

Similar Publications

Objective: Photopolymerized resin composites are widely used as dental filling materials. However, the shrinkage stress generated during photopolymerization can lead to marginal microcracks and eventual restoration failure. Accurate assessment of the stress evolution in dental restorations, particularly in complex cavity geometries, is critical for improving the performance and longevity of the dental filling materials.

View Article and Find Full Text PDF

Dual-Modality Flow Phantom for Ultrasound and Optical Flow Measurements.

Phys Med Biol

January 2025

Schlegel Research Institute for Aging, University of Waterloo, 250 Laurelwood Drive, Waterloo, Ontario, N2L 3G1, CANADA.

As ultrasound-compatible flow phantoms are devised for performance testing and calibration, there is a practical need to obtain independent flow measurements for validation using a gold-standard technique such as particle image velocimetry (PIV). In this paper, we present the design of a new dual-modality flow phantom that allows ultrasound and PIV measurements to be simultaneously performed. Our phantom's tissue mimicking material is based on a novel hydrogel formula that uses propylene glycol to lower the freezing temperature of an ultrasound-compatible poly(vinyl) alcohol cryogel and, in turn, maintain the solution's optical transparency after thermocycling.

View Article and Find Full Text PDF

Carotid plaques-the buildup of cholesterol, calcium, cellular debris, and fibrous tissues in carotid arteries-can rupture, release microemboli into the cerebral vasculature and cause strokes. The likelihood of a plaque rupturing is thought to be associated with its composition (i.e.

View Article and Find Full Text PDF

Interventional embolization has been widely used as a clinical cancer therapy, which deactivates the tumors by occluding their blood supply vessels. However, conventional methods lack active control over the embolic particles, thus having a limited selectivity of millimeter-scale vessels and the issue of missing embolization. Here, we propose an ultrasound-based method for embolic particle control in submillimeter vessels.

View Article and Find Full Text PDF

Soft Metalens for Broadband Ultrasonic Focusing through Aberration Layers.

Nat Commun

January 2025

Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.

Aberration layers (AL) often present significant energy transmission barriers in microwave engineering, electromagnetic waves, and medical ultrasound. However, achieving broadband ultrasonic focusing through aberration layers like the human skull using conventional materials such as metals and elastomers has proven challenging. In this study, we introduce an inverse phase encoding method employing tunable soft metalens to penetrate heterogeneous aberration layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!