A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rewiring Photosynthesis by Water-Soluble Fullerene Derivatives for Solar-Powered Electricity Generation. | LitMetric

Rewiring Photosynthesis by Water-Soluble Fullerene Derivatives for Solar-Powered Electricity Generation.

Adv Sci (Weinh)

CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

Published: June 2024

Natural photosynthesis holds great potential to generate clean electricity from solar energy. In order to utilize this process for power generation, it is necessary to rewire photosynthetic electron transport chains (PETCs) of living photosynthetic organisms to redirect more electron flux toward an extracellular electrode. In this study, a semi-artificial rewiring strategy, which use a water-soluble fullerene derivative to capture electrons from PETCs and donate them for electrical current generation, is proposed. A positively charged fullerene derivative, functionalized with N,N-dimethyl pyrrolidinium iodide, is found to be efficiently taken up by the cyanobacterium Synechocystis sp. PCC 6803. The distribution of this fullerene derivative near the thylakoid membrane, as well as site-specific inhibitor assays and transient absorption spectroscopy, suggest that it can directly interact with the redox centers in the PETCs, particularly the acceptor side of photosystem I (PSI). The internalized fullerene derivatives facilitate the extraction of photosynthetic electrons and significantly enhance the photocurrent density of Synechocystis by approximately tenfold. This work opens up new possibility for the application of fullerenes as an excellent 3D electron carrier in living biophotovoltaics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187915PMC
http://dx.doi.org/10.1002/advs.202310245DOI Listing

Publication Analysis

Top Keywords

fullerene derivative
12
water-soluble fullerene
8
fullerene derivatives
8
fullerene
5
rewiring photosynthesis
4
photosynthesis water-soluble
4
derivatives solar-powered
4
solar-powered electricity
4
electricity generation
4
generation natural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!