The construction of carbonyl compounds via carbonylation reactions using safe CO sources remains a long-standing challenge to synthetic chemists. Herein, we propose a catalyst cascade Scheme in which CO is used as a CO surrogate in the carbonylation of benzyl chlorides. Our approach is based on the cooperation between two coexisting catalytic cycles: the CO-to-CO electroreduction cycle promoted by [Fe(TPP)Cl] (TPP=meso-tetraphenylporphyrin) and an electrochemical carbonylation cycle catalyzed by [Ni(bpy)Br] (2,2'-bipyridine). As a proof of concept, this protocol allows for the synthesis of symmetric ketones from good to excellent yields in an undivided cell with non-sacrificial electrodes. The reaction can be directly scaled up to gram-scale and operates effectively at a CO concentration of 10 %, demonstrating its robustness. Our mechanistic studies based on cyclic voltammetry, IR spectroelectrochemistry and Density Functional Theory calculations suggest a synergistic effect between the two catalysts. The CO produced from CO reduction is key in the formation of the [Ni(bpy)(CO)], which is proposed as the catalytic intermediate responsible for the C-C bond formation in the carbonylation steps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202403674 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!