The relationship between fine particulate matter (PM2.5) and blood pressure (BP) is a controversial issue. We conducted a two-sample Mendelian randomization (MR) analysis and identified 58 genome-wide significant single-nucleotide polymorphisms associated with PM2.5 as instrument variables. Inverse-variance weighted (IVW) was used as the primary analysis approach. MR-Egger, weighted median, simple model, and weighted model methods were selected for quality control. We found a significant negative causal association of higher genetically predicted PM2.5 levels with lower systolic BP (SBP), while no causal relationship was identified between PM2.5 and diastolic BP (DBP). For each 1 standard deviation increase in genetically predicted PM2.5 levels, the beta value (95% CI) of SBP was -0.14 (-0.25, -0.03) for IVW (p=0.02), and -0.13 (-0.22, -0.04) for weighted median (p=0.005). Increased PM2.5 concentrations can lead to decreased SBP levels. Our findings provided novel insights into the controversial topic on the causal relationship between PM2.5 and BP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09603123.2024.2339536 | DOI Listing |
Toxics
August 2024
School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, China.
Long-term exposure to PM pollution increases the risk of cardiovascular diseases, particularly ischemic heart disease (IHD). Current assessments of the health effects related to PM exposure are limited by sparse ground monitoring stations and applicable disease research cohorts, making accurate health effect evaluations challenging. Using satellite-observed aerosol optical depth (AOD) data and the XGBoost-PM25 model, we obtained 1 km scale PM exposure levels across China.
View Article and Find Full Text PDFEnviron Pollut
December 2024
School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Although total carbon (TC) is an important component of fine particulate matter (PM: particulate matter with aerodynamic diameter of <2.5 μm); its sources remain partially unidentified, especially in coastal urban areas. With ongoing development of the global economy and maritime activities, ship-generated TC emissions in port areas cannot be neglected.
View Article and Find Full Text PDFMed Sci Monit
May 2024
Department of Maternal Health Care, Maternal and Child Health Hospital of Tongling, Tongling, Anhui, China (mainland).
BACKGROUND Exposure to air pollution (AP) during pregnancy is associated with pre-labor rupture of membranes (PROM). However, there is limited research on this topic, and the sensitive exposure windows remain unclear. The present study assessed the association between AP exposure and the risk of PROM, as well as seeking to identify the sensitive time windows.
View Article and Find Full Text PDFEnviron Res
July 2024
Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.
Ambient exposure to fine particulate matter (PM) is associated with increased morbidity and mortality from multiple diseases. Recent observations suggest the hypothesis that trained immunity contributes to these risks, by demonstrating that ambient PM sensitizes innate immune cells to mount larger inflammatory response to subsequent bacterial stimuli. However, little is known about how general and durable this sensitization phenomenon is, and whether specific sources of PM are responsible.
View Article and Find Full Text PDFGreen and low-carbon are the keywords of the 2022 Beijing Winter Olympic Games (WOG) and the core of sustainable development. Beijing's and emissions attracted worldwide attention during WOG. However, the complex emission sources and frequently changing weather patterns make it impossible for a single monitoring approach to meet the high-resolution, full-coverage monitoring requirements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!