Rescuing a Troubled Tolcapone with PEGylated PLGA Nanoparticles: Design, Characterization, and Hepatotoxicity Evaluation.

ACS Appl Mater Interfaces

CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R.Campo Alegre s/n, Porto 4169-007, Portugal.

Published: May 2024

Tolcapone is an orally active catechol-O-methyltransferase (COMT) inhibitor used as adjuvant therapy in Parkinson's disease. However, it has a highly hepatotoxic profile, as recognized by the U.S. Food and Drug Administration. As a possible solution, nanoscience brought us several tools in the development of new functional nanomaterials with tunable physicochemical properties, which can be part of a solution to solve several drawbacks, including drug's short half-life and toxicity. This work aims to use PEGylated poly(lactic--glycolic acid) (PLGA) nanoparticles as a stable carrier with lower hydrodynamic size and polydispersity to encapsulate tolcapone in order to overcome its therapeutic drawbacks. Using the nanoprecipitation method, tolcapone-loaded nanoparticles with a DLC% of 5.7% were obtained (EE% of 47.0%) and subjected to a lyophilization optimization process to obtain a final shelf-stable formulation. Six different cryoprotectants in concentrations up to 10% (w/v) were tested. A formulation of PLGA nanoparticles with 3% hydroxypropyl-β-cyclodextrin (HPβCD) as a cryoprotectant (PLGA-HP@Tolc), presenting sub-200 nm sizes and low polydispersity (PdI < 0.200) was selected. Cytotoxicity assays, namely, MTT and SRB, were used to study the metabolic activity and cell density of tolcapone and PLGA-HP@Tolc-treated cells. In both assays, a hepatocarcinoma cell line (HepG2) growing in glucose or glucose-free media (galactose-supplemented medium) was used. The results demonstrated that the treatment with the PLGA-HP@Tolc formulation led to a decrease in cytotoxicity in comparison to free tolcapone-treated cells in both media tested. Moreover, the elected formulation also counteracted ATP-depletion and excessive ROS production induced by tolcapone. The results suggest that HPβCD might have a dual function in the formulation: cryoprotectant and anticytotoxic agent, protecting cells from tolcapone-induced damage. Using an COMT inhibition assay, the PLGA-HP@Tolc formulation demonstrated to inhibit COMT as efficiently as free tolcapone. Overall, the results suggest that tolcapone-loaded PLGA NPs could be an interesting alternative to free tolcapone, demonstrating the same efficacy in inhibiting COMT but with a safer cytotoxic profile.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c00614DOI Listing

Publication Analysis

Top Keywords

plga nanoparticles
12
plga-hp@tolc formulation
8
free tolcapone
8
tolcapone
7
formulation
6
rescuing troubled
4
troubled tolcapone
4
tolcapone pegylated
4
plga
4
pegylated plga
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!