is a major potato pest of global importance, early warning and detection of which are of significance. In this study, we analyzed the climate niche conservation of during its invasion by comparing the overall climate niche from three dimensions, including the differences between native range (South America) and entire invaded region (excluding South America), the differences bwtween native range (South America) and five invaded continents (North America, Oceania, Asia, Africa, and Europe), as well as the differences between native region (South America) and an invaded region (China). We constructed ecological niche models for its native range (South America) and invaded region (China). The results showed that the climatic niche of the pest has expanded to varying degrees in different regions, indicating that the pest could well adapt to new environments during the invasion. Almost all areas of South America are suitable for In China, its suitable area is mainly concentrated in Shandong, Hebei, Tianjin, Beijing, Henan, Hubei, Yunnan, Guizhou, Sichuan, Hainan, northern Guangxi, southern Hunan, Anhui, Guangdong, Jiangsu, southern Shanxi, and southern Shaanxi. With increasing greenhouse gas emissions and global temperature, its suitable area will decrease at low latitude and increase gradually at high latitude. Specifically, the northern boundary will extend to Liaoning, Jilin, and the southeastern region of Inner Mongolia, while the western boundary extends to Sichuan and the southeast Qinghai-Tibet Plateau. The suitable area in the southeast Yunnan-Guizhou Plateau, Hainan Island, and the south of Yangtze River, will gradually decrease. The total suitable habitat area for in China is projected to increase under future climate condition. From 2081 to 2100, under the three greenhouse gas emissions scenarios of ssp126, ssp370, and ssp585, the suitable area is expected to increase by 27.78, 165.54, and 140.41 hm, respectively. Therefore, it is crucial to strengtehen vigilance and implement strict measures to prevent the further expansion of
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.202403.013 | DOI Listing |
Rheumatol Int
January 2025
Department of Internal Medicine & Office of Research, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
We aimed to assess the typical experiences, desired outcomes, satisfaction with clinical and anticipated outcomes, and the importance of improvements for individuals with Hypermobile Ehlers-Danlos Syndrome (hEDS) and Generalized Hypermobility Spectrum Disorder (G-HSD). A cross-sectional survey was conducted among adults aged 18 and above with hEDS and G-HSD. The survey included the Patient-Centered Outcome Questionnaire and an adapted version addressing common concerns in these individuals.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
Clinical Development, Takeda Pharmaceuticals International AG, Zurich, Switzerland.
As infants suffer significant morbidity and mortality due to norovirus-related acute gastroenteritis (AGE), we assessed four formulations of the bivalent virus-like particle (VLP) vaccine candidate (HIL-214) in Panamanian and Colombian infants. 360 infants aged 6 weeks to 5 months were randomly allocated to 8 groups to receive three doses of HIL-214 or two doses of HIL-214 and one dose of placebo (Days 1, 56 and 112), where HIL-214 doses contained 15/15, 15/50, 50/50 or 50/150 μg of GI.1/GII.
View Article and Find Full Text PDFAfter decades of inactivity throughout the Americas, western equine encephalitis virus (WEEV) recently re-emerged in South America, causing a large-scale outbreak in humans and horses. WEEV binds protocadherin 10 (PCDH10) as a receptor; however, nonpathogenic strains no longer bind human or equine PCDH10 but retain the ability to bind avian receptors. Highly virulent WEEV strains can also bind the very low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) as alternative receptors.
View Article and Find Full Text PDFVirus Evol
November 2024
Center for Viral Surveillance and Serological Assessment (CeVIVAS), Instituto Butantan, Avenida Vital Brasil, 1500, Butantã, São Paulo, São Paulo 05503-900, Brazil.
Influenza A and B viruses represent significant global health threats, contributing substantially to morbidity and mortality rates. However, a comprehensive understanding of the molecular epidemiology of these viruses in Brazil, a continental-size country and a crucial hub for the entry, circulation, and dissemination of influenza viruses within South America, still needs to be improved. This study addresses this gap by consolidating data and samples across all Brazilian macroregions, as part of the Center for Viral Surveillance and Serological Assessment project, together with an extensive number of other Brazilian sequences provided by a public database during the epidemic seasons spanning 2021-23.
View Article and Find Full Text PDFBetween 21 September and 6 December 2024, 657 highly pathogenic avian influenza (HPAI) A(H5N1) and A(H5N5) virus detections were reported in domestic (341) and wild (316) birds across 27 countries in Europe. Many HPAI outbreaks in domestic birds were clustered in areas with high poultry density and characterised by secondary farm-to-farm spread. Waterfowl, particularly the mute swan, were primarily affected during this reporting period, with HPAI virus detections focused on south-eastern Europe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!