Transformer neural networks show promising capabilities, in particular for uses in materials analysis, design, and manufacturing, including their capacity to work effectively with human language, symbols, code, and numerical data. Here, we explore the use of large language models (LLMs) as a tool that can support engineering analysis of materials, applied to retrieving key information about subject areas, developing research hypotheses, discovery of mechanistic relationships across disparate areas of knowledge, and writing and executing simulation codes for active knowledge generation based on physical ground truths. Moreover, when used as sets of AI agents with specific features, capabilities, and instructions, LLMs can provide powerful problem-solution strategies for applications in analysis and design problems. Our experiments focus on using a fine-tuned model, MechGPT, developed based on training data in the mechanics of materials domain. We first affirm how fine-tuning endows LLMs with a reasonable understanding of subject area knowledge. However, when queried outside the context of learned matter, LLMs can have difficulty recalling correct information and may hallucinate. We show how this can be addressed using retrieval-augmented Ontological Knowledge Graph strategies. The graph-based strategy helps us not only to discern how the model understands what concepts are important but also how they are related, which significantly improves generative performance and also naturally allows for injection of new and augmented data sources into generative AI algorithms. We find that the additional feature of relatedness provides advantages over regular retrieval augmentation approaches and not only improves LLM performance but also provides mechanistic insights for exploration of a material design process. Illustrated for a use case of relating distinct areas of knowledge, here, music and proteins, such strategies can also provide an interpretable graph structure with rich information at the node, edge, and subgraph level that provides specific insights into mechanisms and relationships. We discuss other approaches to improve generative qualities, including nonlinear sampling strategies and agent-based modeling that offer enhancements over single-shot generations, whereby LLMs are used to both generate content and assess content against an objective target. Examples provided include complex question answering, code generation, and execution in the context of automated force-field development from actively learned density functional theory (DFT) modeling and data analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11027160 | PMC |
http://dx.doi.org/10.1021/acsengineeringau.3c00058 | DOI Listing |
Sensors (Basel)
January 2025
School of Communication and Information Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
Artificial intelligence (AI), particularly through advanced large language model (LLM) technologies, is reshaping coal mine safety assessment methods with its powerful cognitive capabilities. Given the dynamic, multi-source, and heterogeneous characteristics of data in typical mining scenarios, traditional manual assessment methods are limited in their information processing capacity and cost-effectiveness. This study addresses these challenges by proposing an embodied intelligent system for mine safety assessment based on multi-level large language models (LLMs) for multi-source sensor data.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
In recent years, advancements in the interaction and collaboration between humans and have garnered significant attention. Social intelligence plays a crucial role in facilitating natural interactions and seamless communication between humans and Artificial Intelligence (AI). To assess AI's ability to understand human interactions and the components necessary for such comprehension, datasets like Social-IQ have been developed.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institut de Recherche en Informatique de Toulouse, IRIT UMR5505 CNRS, 31400 Toulouse, France.
This review explores the applications of Convolutional Neural Networks (CNNs) in smart agriculture, highlighting recent advancements across various applications including weed detection, disease detection, crop classification, water management, and yield prediction. Based on a comprehensive analysis of more than 115 recent studies, coupled with a bibliometric study of the broader literature, this paper contextualizes the use of CNNs within Agriculture 5.0, where technological integration optimizes agricultural efficiency.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Chair of Geoinformatics, Faculty of Geodesy, University of Zagreb, 10 000 Zagreb, Croatia.
Green infrastructure (GI) plays a crucial role in sustainable urban development, but effective mapping and analysis of such features requires a detailed understanding of the materials and state-of-the-art methods. This review presents the current landscape of green infrastructure mapping, focusing on the various sensors and image data, as well as the application of machine learning and deep learning techniques for classification or segmentation tasks. After finding articles with relevant keywords, the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyzes) method was used as a general workflow, but some parts were automated (e.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Computer Engineering, Dongseo University, Busan 47011, Republic of Korea.
Choosing nutritious foods is essential for daily health, but finding recipes that match available ingredients and dietary preferences can be challenging. Traditional recommendation methods often lack personalization and accurate ingredient recognition. Personalized systems address this by integrating user preferences, dietary needs, and ingredient availability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!