A mutation in the brassinosteroid biosynthesis gene disrupts vegetative and reproductive development and the salt stress response in squash ().

Hortic Res

Department of Biology and Geology, Agrifood Campus of International Excellence (CeiA3), and Research Center CIAMBITAL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain.

Published: April 2024

A mutant with multiple defects in growth and development has been identified and characterized. The mutant displayed a dwarf phenotype with dark green and shrinking leaves, shortened internodes and petioles, shorter but thicker roots and greater root biomass, and reduced fertility. The causal mutation of the phenotype was found to disrupt gene , the squash orthologue of the brassinosteroid (BR) biosynthesis gene , encoding for 7-dehydrocholesterol reductase. A single nucleotide transition (G > A) causes a splicing defect in intron 6 that leads to a premature stop codon and a truncated CpDWF5 protein. The mutation co-segregated with the dwarf phenotype in a large BCS segregating population. The reduced expression of and brassinolide (BL) content in most mutant organs, and partial rescue of the mutant phenotype by exogenous application of BL, showed that the primary cause of the dwarfism in is a BR deficiency. The results showed that in , is not only a positive growth regulator of different plant organs but also a negative regulator of salt tolerance. During germination and the early stages of seedling development, the dwarf mutant was less affected by salt stress than the wild type, concomitantly with a greater upregulation of genes associated with salt tolerance, including those involved in abscisic acid (ABA) biosynthesis, ABA and Ca signaling, and those coding for cation exchangers and transporters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11031414PMC
http://dx.doi.org/10.1093/hr/uhae050DOI Listing

Publication Analysis

Top Keywords

brassinosteroid biosynthesis
8
biosynthesis gene
8
salt stress
8
dwarf phenotype
8
salt tolerance
8
mutant
5
mutation brassinosteroid
4
gene disrupts
4
disrupts vegetative
4
vegetative reproductive
4

Similar Publications

Salt stress is one of the abiotic stresses affecting crop quality and yield, and the application of exogenous brassinosteroids (BRs) can be used in response to salt stress. However, the function of BR in tea plants under salt stress remains to be elucidated. This study investigated the effects of exogenous spraying of BR on the malondialdehyde, soluble sugar, soluble protein, and antioxidant enzyme activities in tea plants under salt stress and explored the expression changes in genes related to the synthesis pathways of proline and secondary metabolites (flavonoids and theanine).

View Article and Find Full Text PDF

SlUPA-like, a bHLH Transcription Factor in Tomato (), Serves as the Crosstalk of GA, JA and BR.

Int J Mol Sci

December 2024

Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.

The bHLH (basic Helix-Loop-Helix) transcription factor serves as pivotal controller in plant growth and development. In a previous study, the overexpression of in L. Ailsa Craig (AC) altered the JA (Jasmonic acid) response and endogenous GA (Gibberellic acid) content.

View Article and Find Full Text PDF

Depletion of Gibberellin Signaling Up-Regulates Transcription and Promotes Adventitious Root Formation in Leaf Explants.

Int J Mol Sci

December 2024

Jiangxi Provincial Key Laboratory of Plant Germplasm Innovation and Genetic Improvement, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China.

Adventitious root (AR) formation in plants originates from non-root organs such as leaves and hypocotyls. Auxin signaling is essential for AR formation, but the roles of other phytohormones are less clear. In , at least two distinct mechanisms can produce ARs, either from hypocotyls as part of the general root architecture or from wounded organs during de novo root regeneration (DNRR).

View Article and Find Full Text PDF

Melatonin Enhances the Low-Calcium Stress Tolerance by Regulating Brassinosteroids and Auxin Signals in Wax Gourd.

Antioxidants (Basel)

December 2024

Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China.

In plants, calcium (Ca) serves as an essential nutrient and signaling molecule. Melatonin is a biologically active and multi-functional hormone that plays an important role in improving nutrient use efficiency. However, its involvement in plant responses to Ca deficiency remains largely unexplored.

View Article and Find Full Text PDF

Take a Deep BReath: Manipulating brassinosteroid homeostasis helps cereals adapt to environmental stress.

Plant Physiol

January 2025

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.

Global climate change leads to the increased occurrence of environmental stress (including drought and heat stress) during the vegetative and reproductive stages of cereal crop development. Thus, more attention should be given to developing new cereal cultivars with improved tolerance to environmental stress. However, during the development of new stress-tolerant cereal cultivars, the balance between improved stress responses (which occur at the expense of growth) and plant yield needs to be maintained.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!