Chemical systems glycobiology requires experimental and computational tools to make possible big data analytics benefiting genomics and proteomics. The impediment to tool development is that the nature of glycan construction and mutation is not template driven but rests on cooperative glycosyltransferase (GT) catalytic synthesis. What is needed is the collation of kinetics and inhibition data in a standardized form to make possible analytics of glycan and glycoconjugate synthesis, mechanism extraction, and pattern recognition. Currently, kinetics assays in use for GTs are not universal in processing nucleoside phosphate UDP, GDP, and CMP donor-based glycosylation reactions due to limitations in accuracy and large substrate volume requirements. Here we present a universal glycosyltransferase continuous (UGC) assay able to measure the declining concentration of the NADH reporter molecule through fluorescence spectrophotometry and, therefore, determine reaction rate parameters. The development and parametrization of the assay is based on coupling the nucleotide released from GT reactions with pyruvate kinase, via nucleoside diphosphate kinase (NDK) in the case of NDP-based donor reactions. In the case of CMP-based reactions, the coupling is carried out via another kinase, cytidylate kinase in combination with NDK, which phosphorylates CMP to CDP, then CDP to CTP. Following this, we conduct kinetics and inhibition assay studies on the UDP, GDP, and CMP-based glycosylation reactions, specifically C1GAlT1, FUT1, and ST3GAL1, to represent each class of donor, respectively. The accuracy of calculating initial rates using the continuous assay compared to end point (noncontinuous) assays is demonstrated for the three classes of GTs. The previously identified natural product soyasaponin1 inhibitor was used as a model to demonstrate the application of the UGC assay as a standardized inhibition assay for GTs. We show that the dose response of ST3GAL1 to a serial dilution of Soyasaponin1 has time-dependent inhibition. This brings into question previous inhibition findings, arrived at using an end point assay, that have selected a seemingly random time point to measure inhibition. Consequently, using standardized values taken from the UGC assay study, ST3GAL1 was shown to be the most responsive enzyme to soyasaponin1 inhibition, followed by FUT1, then C1GALT1 with IC values of 37, 52, and 886 μM respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11025096 | PMC |
http://dx.doi.org/10.1021/acsomega.4c00485 | DOI Listing |
J Mol Model
January 2025
Department of Chemistry, Military Institute of Engineering, Praça General Tibúrcio 80, Rio de Janeiro, Brazil.
Context: Nitrocellulose, widely used in energetic materials, is prone to thermal and chemical degradation, compromising safety and performance. Stabilizers are molecules used in the composition of nitrocellulose-based propellants to inhibit the autocatalytic degradation process that produces nitrous gases and free nitric acids. Curcumin, (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, known for its antioxidant properties and a potential green stabilizer, was investigated using Density Functional Theory (DFT) focusing on its interaction with nitrogen dioxide.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
The "catalytic triad" present at the active site of ribonuclease A (RNase A) is responsible for the cleavage of the 5'-phosphodiester bond; amino acid residues His12, Lys41 and His119 constituting this triad provide a positively charged environment at the physiological pH. Based on docking studies, 1,4,5-trisubstituted-carboxylated 1,2,3-triazoles (1,4,5-TTs) were identified as a new class of RNase A inhibitors. Therefore, two different groups of 1,4,5-TTs, functionalized with carboxylic acid groups, were synthesized by reacting pre functionalized butyne-1,4-diol derivatives with several aryl/alkyl azides under solvent and catalyst free conditions.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
The corn starch-protein complexes before postharvest ripening (JD-0) and after postharvest ripening (JD-40) were subjected to protease treatment, and the influence of protein on starch retrogradation was studied. Kinetic studies of starch retrogradation showed that protein reduced the retrogradation rate constant (k) of starch by 25.46 % (JD-0) and 7.
View Article and Find Full Text PDFCurr Pharm Biotechnol
December 2024
LMAE, Faculty of Sciences Exactes, University of Mascara, B.P. 763, Mascara, Algeria.
Introduction: A stone is a compact mass of one or more crystallised substances. The essential mechanism of stone formation is an excessive concentration of poorly soluble compounds in the urine. In excessive concentration, these compounds precipitate into crystals, which then aggregate to form a stone.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
The Hebrew University of Jerusalem - Givat Ram Campus: Hebrew University of Jerusalem - Edmond J Safra Campus, Institute of Chemistry, Givat Ram, 91904, Jerusalem, ISRAEL.
A method to photomodulate dynamically transient DNA-based reaction circuits and networks is introduced. The method relies on the integration of photoresponsive o-nitrobenzyl-phosphate ester-caged DNA hairpin with a "mute" reaction module. Photodeprotection (λ = 365 nm) of the hairpin structure separates a fuel strand triggering the dynamic, transient, operation of the DNA circuit/network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!