The cathode materials in lithium-ion batteries (LIBs) require improvements to address issues such as surface degradation, short-circuiting, and the formation of dendrites. One such method for addressing these issues is using surface coatings. Coatings can be sought to improve the durability of cathode materials, but the characterization of the uniformity and stability of the coating is important to assess the performance and lifetime of these materials. For microscale particles, there are, however, challenges associated with characterizing their surface modifications by transmission electron microscopy (TEM) techniques due to the size of these particles. Often, techniques such as focused ion beam (FIB)-assisted lift-out can be used to prepare thin cross sections to enable TEM analysis, but these techniques are very time-consuming and have a relatively low throughput. The work outlined herein demonstrates a FIB technique with direct support of microscale cathode materials on a TEM grid that increases sample throughput and reduces the processing time by 60-80% (i.e., from >5 to ∼1.5 h). The demonstrated workflow incorporates an air-liquid particle assembly followed by direct particle transfer to a TEM grid, FIB milling, and subsequent TEM analysis, which was illustrated with lithium nickel cobalt aluminum oxide particles and lithium manganese nickel oxide particles. These TEM analyses included mapping the elemental composition of cross sections of the microscale particles using energy-dispersive X-ray spectroscopy. The methods developed in this study can be extended to high-throughput characterization of additional LIB cathode materials (e.g., new compositions, coating, end-of-life studies), as well as to other microparticles and their coatings as prepared for a variety of applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11025079PMC
http://dx.doi.org/10.1021/acsomega.4c00318DOI Listing

Publication Analysis

Top Keywords

cathode materials
16
focused ion
8
ion beam
8
issues surface
8
microscale particles
8
cross sections
8
tem analysis
8
tem grid
8
oxide particles
8
particles
6

Similar Publications

Vestibular dysfunction has been reported as a potential cause in adolescent idiopathic scoliosis (AIS). However, it remained unclear how stochastic galvanic vestibular stimulation (GVS) affected kinetic performance of patients with AIS. This study aimed to investigate the effect of stochastic GVS on ground reaction forces (GRF) measures during obstacle negotiation among patients with AIS.

View Article and Find Full Text PDF

Easily Water-Synthesisable Iron-Chloranilate Frameworks as High Energy and High-Power Cathodes for Sustainable Alkali-Ion Batteries.

Angew Chem Int Ed Engl

January 2025

Universidad Complutense de Madrid Facultad de Ciencias Quimicas, Inorganic Chemistry Department, 28034, Madrid, SPAIN.

Achieving high battery performance from low-cost, easily synthesisable electrode materials is crucial for advancing energy storage technologies. Metal organic frameworks (MOFs) combining inexpensive transition metals and organic ligands are promising candidates for high-capacity cathodes. Iron-chloranilate-water frameworks are herein reported to be produced in aqueous media under mild conditions.

View Article and Find Full Text PDF

All-solid-state lithium metal batteries are regarded as next-generation devices for energy storage due to their safety and high energy density. The issues of lithium dendrites and poor mechanical compatibility with electrodes present the need for developing solid-state electrolytes with high stiffness and damping, but it is a contradictory relationship. Here, inspired by the superstructure of tooth enamel, we develop a composite solid-state electrolyte composed of amorphous ceramic nanotube arrays intertwined with solid polymer electrolytes.

View Article and Find Full Text PDF

Functionalized polymer membrane electrodes based multichannel sensor is used as an electronic tongue to monitor the drinking water (DW) quality simply by measuring the surface electric potential with respect to Ag/AgCl reference electrode in 1 mM aqueous KCl. Changes of minute concentration of dissolved minerals greatly affected the surface potential of the sensor. The three-channel sensor device (electronic tongue) is made by using three different functionalized polymer membrane electrodes, namely, phosphorylated hexadecyl trimethyl ammonium chloride modified polyvinyl alcohol-polyacrylic acid membrane; phosphorylated and crosslinked polyvinyl--ethylene membrane; phosphorylated and crosslinked polyvinyl alcohol membrane, as working electrodes and a Ag/AgCl reference electrode.

View Article and Find Full Text PDF

Risk factors for long-term severe tricuspid regurgitation following mitral valve replacement: a retrospective study.

BMC Cardiovasc Disord

January 2025

Department of Cardiology, Xuzhou Central Hospital, No.199 Jiefang South Road, Quanshan District, Xuzhou, 221009, People's Republic of China.

Background: The aim of this study is to identify factors associated with the development of long-term severe tricuspid regurgitation (TR) following mitral valve replacement (MVR).

Methods: A retrospective analysis was conducted involving 308 patients who underwent single-valve MVR at Xuzhou Central Hospital between April 2017 and December 2022. Preoperative color Doppler ultrasound indicated that all patients had either no or mild to moderate tricuspid regurgitation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!