Macroscale Modeling of Geochemistry Influence on Polymer and Low-Salinity Waterflooding in Carbonate Oil Reservoirs.

ACS Omega

Division of Sustainable Resources Engineering Faculty of Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628, Japan.

Published: April 2024

The enhancement of oil recovery (EOR) through low-salinity waterflooding (LSWF) and the emerging hybrid with a polymer (LSP) has proven to be effective at microscale investigations and cost-effective with ease of operation at field-scale tests. Their application in carbonate oil reservoirs, which typically occur oil-wet, presents a particularly essential capacity given that over half of the global oil reserves are hosted in carbonate formation. However, modeling the mechanisms involved to predict and evaluate the performance of low salinity-based EOR at a large scale is complex and requires the integration of geochemistry in reservoir simulation to upscale the interfacial interactions of crude oil, brine, and rock observed at the micrometer scale. This study presents an integrated approach that combines MRST's polymer model with PHREEQC geochemical modeling to simulate LSWF at the reservoir scale. Using single-phase and multiphase experimental flooding data for validation, the coupled model was shown to accurately predict effluent ionic and oil recovery profiles. The simulation of LSWF and LSP both exhibited additional tertiary oil recovery, with LSWF and LSP showing 3 and 2%, respectively, which are consistent with previously reported field and core flooding results. Furthermore, the sequential application of formation water (FW), LSWF, and LSP flooding in secondary mode showed a high increase in oil recovery, with oil recovery percentages of 61, 20, and 19%, respectively. However, the FW results were 50% lower compared to regular core flooding due to upscaling limitations. The modeling of vertical and anisotropic permeability heterogeneity effects showed a positive synergy with low-salinity floodings, resulting in a 4% drop and 3 and 1% increase in FW, LSWF, and LSP, respectively. These findings demonstrate the potential of the coupled MRST-PHREEQC model in accurately simulating hydrogeochemical interactions during LSWF/LSP at the reservoir scale, providing valuable insights for the optimization of low salinity-based EOR strategies in carbonate reservoirs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11024941PMC
http://dx.doi.org/10.1021/acsomega.3c10022DOI Listing

Publication Analysis

Top Keywords

oil recovery
20
lswf lsp
16
oil
9
low-salinity waterflooding
8
carbonate oil
8
oil reservoirs
8
low salinity-based
8
salinity-based eor
8
reservoir scale
8
model accurately
8

Similar Publications

The escalating global energy demand necessitates enhanced oil recovery methods, particularly offshore. Biological nanotechnology offers sustainable, environment-friendly, and cost-effective alternatives to synthetic chemicals. This study explored the synthesis of polysaccharide-based nanoparticles (PNPs) from Corchorus olitorius leaves using a weak acid-assisted ultrasonic method and their application as nanocomposites for oil recovery.

View Article and Find Full Text PDF

Background: Loss of muscle mass and strength in patients who have experienced severe burns is dramatic and associated with subsequent functional impairment. Past work has shown that exercise and oxandrolone, an anabolic steroid, individually improve muscle function and muscle mass in severely burned patients. This study aims to evaluate the effect of oxandrolone treatment combined with resistance exercise on muscle atrophy and investigate the protein synthesis and mitochondrial biogenesis pathways in a hindlimb suspension model.

View Article and Find Full Text PDF

Ultrasensitive detection of methylene blue by surface-enhanced Raman scattering (SERS) with Ag nanoparticle-decorated magnetic CoNi layered double hydroxides.

Anal Methods

January 2025

Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.

The unreasonable use of organic dye leads to excessive residues in environmental water, which seriously threatens human health and the natural environment. In this paper, a spherical flower-like magnetic FeO@CoNi layered double hydroxide@silver nanoparticle (FeO@CoNi LDH@Ag NPs) SERS substrate was successfully fabricated electrostatic self-assembly and applied for the sensitive detection of methylene blue (MB) in environmental water. The rapid concentration and separation of the SERS substrate from the water sample could be achieved using an external magnet.

View Article and Find Full Text PDF

Tight oil is a typical unconventional resource, and enhancing its recovery rate remains a challenge in current development efforts. In this study targeting the Daqing Fuyu tight oil reservoir, we combine a high-temperature and high-pressure long core physical simulation apparatus and a high-temperature and high-pressure online Nuclear Magnetic Resonance (NMR) testing system to conduct indoor simulation experiments on CO huff and puff in long cores. The results indicate that in the process, it is primarily the oil from micro-pores that is initially mobilized, but further along mobilization of fluids from a portion of sub-micro-pores and nanopores is enhanced, with an efficiency ranging from 25 to 33 %.

View Article and Find Full Text PDF

Understanding the droplet coalescence/merging is vital for many areas of microfluidics such as biochemical reactors, drug delivery, inkjet printing, oil recovery, etc. In the present study, we carried out numerical simulations of two magnetic droplets suspended in a nonmagnetic fluid matrix and coalescing under the influence of an external magnetic field. We observed that the applied magnetic field played a key role in the merging dynamics of the magnetic droplets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!