Spatial organization of cells is crucial to both proper physiological function of tissues and pathological conditions like cancer. Recent advances in spatial transcriptomics have enabled joint profiling of gene expression and spatial context of the cells. The outcome is an information rich map of the tissue where individual cells, or small regions, can be labeled based on their gene expression state. While spatial transcriptomics excels in its capacity to profile numerous genes within the same sample, most existing methods for analysis of spatial data only examine distribution of one or two labels at a time. These approaches overlook the potential for identifying higher-order associations between cell types - associations that can play a pivotal role in understanding development and function of complex tissues. In this context, we introduce a novel method for detecting motifs in spatial neighborhood graphs. Each motif represents a spatial arrangement of cell types that occurs in the tissue more frequently than expected by chance. To identify spatial motifs, we developed an algorithm for uniform sampling of paths from neighborhood graphs and combined it with a motif finding algorithm on graphs inspired by previous methods for finding motifs in DNA sequences. Using synthetic data with known ground truth, we show that our method can identify spatial motifs with high accuracy and sensitivity. Applied to spatial maps of mouse retinal bipolar cells and hypothalamic preoptic region, our method reveals previously unrecognized patterns in cell type arrangements. In some cases, cells within these spatial patterns differ in their gene expression from other cells of the same type, providing insights into the functional significance of the spatial motifs. These results suggest that our method can illuminate the substantial complexity of neural tissues, provide novel insight even in well studied models, and generate experimentally testable hypotheses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11030378 | PMC |
http://dx.doi.org/10.1101/2024.04.08.588586 | DOI Listing |
eNeuro
January 2025
Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
Axons in the mammalian brain show significant diversity in myelination motifs, displaying spatial heterogeneity in sheathing along individual axons and across brain regions. However, its impact on neural signaling and susceptibility to injury remains poorly understood. To address this, we leveraged cable theory and developed model axons replicating the myelin sheath distributions observed experimentally in different regions of the mouse central nervous system.
View Article and Find Full Text PDFUnlabelled: Motivated behaviors are regulated by distributed forebrain networks. Traditional approaches have often focused on individual brain regions and connections that do not capture the topographic organization of forebrain connectivity. We performed co-injections of anterograde and retrograde tract tracers in rats to provide novel high-spatial resolution evidence of topographic connections that elaborate a previously identified closed-loop forebrain circuit implicated in affective and motivational processes.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Regulatory Bioorganic Chemistry, SANKEN (the Institute of Science and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
Non-canonical DNA structures formed by aberrantly expanded repeat DNA are implicated in promoting repeat instability and the onset of repeat expansion diseases. Small molecules that target these disease-causing repeat DNAs hold promise as therapeutic agents for such diseases. Specifically, 1,3-di(quinolin-2-yl)guanidine (DQG) has been identified to bind to the disease-causing GGCCCC (G2C4) repeat DNA associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD).
View Article and Find Full Text PDFMatrix Biol
January 2025
Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC. Electronic address:
Collagen stroma interactions within the extracellular microenvironment of breast tissue play a significant role in breast cancer, including risk, progression, and outcomes. Hydroxylation of proline (HYP) is a common post-translational modification directly linked to breast cancer survival and progression. Changes in HYP status lead to alterations in epithelial cell signaling, extracellular matrix remodeling, and immune cell recruitment.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Soybean Research Institute, Jilin Academy Agricultural of Science, Changchun 130033, China.
Background: Polyphenol oxidases () form a multigene family that is widely distributed in plants, animals, and insects. To date, have been identified in plants such as L. and L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!