Skeletal muscle architecture is a key determinant of muscle function. Architectural properties such as fascicle length, pennation angle, and curvature can be characterized using Diffusion Tensor Imaging (DTI), but acquiring these data during a contraction is not currently feasible. However, an image registration-based strategy may be able to convert muscle architectural properties observed at rest to their contracted state. As an initial step toward this long-term objective, the aim of this study was to determine if an image registration strategy could be used to convert the whole-muscle average architectural properties observed in the extended joint position to those of a flexed position, following passive rotation. DTI and high-resolution fat/water scans were acquired in the lower leg of seven healthy participants on a 3T MR system in +20° (plantarflexion) and -10° (dorsiflexion) foot positions. The diffusion and anatomical images from the two positions were used to propagate DTI fiber-tracts from seed points along a mesh representation of the aponeurosis of fiber insertion. The -10° and +20° anatomical images were registered and the displacement fields were used to transform the mesh and fiber-tracts from the +20° to the -10° position. Student's paired -tests were used to compare the mean architectural parameters between the original and transformed fiber-tracts. The whole-muscle average fiber-tract length, pennation angle, curvature, and physiological cross-sectional areas estimates did not differ significantly. DTI fiber-tracts in plantarflexion can be transformed to dorsiflexion position without significantly affecting the average architectural characteristics of the fiber-tracts. In the future, a similar approach could be used to evaluate muscle architecture in a contracted state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11030449 | PMC |
http://dx.doi.org/10.1101/2024.04.11.589123 | DOI Listing |
Physiol Res
December 2024
Children's Heart Center, Second Faculty of Medicine, Charles University and Motol University Hospital, Praha, Czech Republic.
Although the heart atria have a lesser functional importance than the ventricles, atria play an important role in the pathophysiology of heart failure and supraventricular arrhythmias, particularly atrial fibrillation. In addition, knowledge of atrial morphology recently became more relevant as cardiac electrophysiology and interventional procedures in the atria gained an increasingly significant role in the clinical management of patients with heart disease. The atrial chambers are thin-walled, and several vessels enter at the level of the atria.
View Article and Find Full Text PDFAesthetic Plast Surg
January 2025
Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1, Shuaifuyuan, Dongcheng District, Beijing, China.
Background: Perioral rejuvenation is challenging due to the lack of spatial anatomical understanding of the labiomandibular fold (LMF). The LMF's formation mechanism remains underexplored due to intricate relationships between musculature and subcutaneous structures. This study aimed to clarify the three-dimensional structures of the LMF using micro-computed tomography and histology.
View Article and Find Full Text PDFBio Protoc
January 2025
Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
Histological techniques to study muscle are crucial for assessing skeletal muscle health. To preserve tissue morphology, samples are usually fixed in formaldehyde or cryopreserved immediately after excision from the body. Freezing samples in liquid nitrogen, using isopentane as a mediator for efficient cooling, preserves the tissue in its natural state.
View Article and Find Full Text PDFMAGMA
January 2025
Aix Marseille Univ, CNRS, CRMBM, Marseille, France.
Objective: Segmentation of individual thigh muscles in MRI images is essential for monitoring neuromuscular diseases and quantifying relevant biomarkers such as fat fraction (FF). Deep learning approaches such as U-Net have demonstrated effectiveness in this field. However, the impact of reducing neural network complexity remains unexplored in the FF quantification in individual muscles.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wrocław, Poland.
The Komodo dragon () is the largest extant lizard and is classified as an endangered species. Despite its rarity, anatomical studies on this species remain limited, hindering a comprehensive understanding of its biology and evolutionary traits. This research presents a detailed anatomical and histological examination of the pelvic limb of a female Komodo dragon, providing valuable insights into the musculoskeletal system of this species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!