Diffuse midline glioma, -altered (DMG-Alt) are highly aggressive malignancies of the central nervous system (CNS) that primarily affect the pediatric population. Large scale spatial transcriptomic studies have implicated that tumor microenvironmental landscape plays an important role in determining the phenotypic differences in tumor presentation and clinical course, however, data connecting overall transcriptomic changes to the protein level is lacking. The NanoString GeoMx Digital Spatial Profiler platform was used to determine the spatial transcriptomic and proteomic landscape in a cohort of both pediatric and adult -altered DMG biopsy samples. Three fluorescently labeled antibodies targeting immune cells (CD45), epithelial cells (PanCK), tumor cells and a nucleic acid stain (SYTO-13) were used to establish regions of interest (ROI) for genomic and proteomic analysis. We found genetic alterations within the tumor which can be delineated across patient age and spatial location. We show that the H3 K27M mutation itself has a profound impact on tumor cells transcriptomics and interestingly we found limited fidelity between overall transcriptome and proteome. Our data also validate the previously described OPC like precursor signature at the proteomic level and reveal a special shift in the signature based on the local TME composition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11030546PMC
http://dx.doi.org/10.21203/rs.3.rs-4139314/v1DOI Listing

Publication Analysis

Top Keywords

transcriptomic proteomic
8
pediatric adult
8
diffuse midline
8
midline glioma
8
spatial transcriptomic
8
tumor cells
8
spatial
5
tumor
5
transcriptomic
4
proteomic spatial
4

Similar Publications

Angiogenesis begins as endothelial cells migrate, forming a sprouting tip and subsequent growth-rich stalk cells. Here, we present a protocol for transcriptomic and epigenomic analyses of tip-like cells in cultured endothelial cells. We describe steps for stimulating human umbilical vein endothelial cells (HUVECs) with vascular endothelial cell growth factor (VEGF) to generate tip-like cells.

View Article and Find Full Text PDF

Pathogens manipulate host physiology through the secretion of virulence factors (effectors) to invade and proliferate on the host. The molecular functions of effectors inside plant hosts have been of interest in the field of molecular plant-microbe interactions. Obligate biotrophic pathogens, such as rusts and powdery mildews, cannot proliferate outside of plant hosts.

View Article and Find Full Text PDF

Osteogenic differentiation is crucial in normal bone formation and pathological calcification, such as calcific aortic valve disease (CAVD). Understanding the proteomic and transcriptomic landscapes underlying this differentiation can unveil potential therapeutic targets for CAVD. In this study, we employed RNA sequencing transcriptomics and proteomics on a timsTOF Pro platform to explore the multiomics profiles of valve interstitial cells (VICs) and osteoblasts during osteogenic differentiation.

View Article and Find Full Text PDF

Multi-omics analyses of early-onset familial Alzheimer's disease and Sanfilippo syndrome zebrafish models reveal commonalities in disease mechanisms.

Biochim Biophys Acta Mol Basis Dis

January 2025

Alzheimer's Disease Genetics Laboratory, School of Molecular and Biomedical Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia.

Sanfilippo syndrome (mucopolysaccharidosis type III, MPSIII) causes childhood dementia, while Alzheimer's disease is the most common type of adult-onset dementia. There is no cure for either of these diseases, and therapeutic options are extremely limited. Increasing evidence suggests commonalities in the pathogenesis of these diseases.

View Article and Find Full Text PDF

Omics approaches: Role in acute myeloid leukemia biomarker discovery and therapy.

Cancer Genet

January 2025

PhD of Hematology, Assistant Professor, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran. Electronic address:

Article Synopsis
  • Acute myeloid leukemia (AML) is the most common and deadliest acute leukemia in adults, especially impacting those over 65 who have a low survival rate of 30% within a year.
  • There is a critical need to improve treatment outcomes as many patients struggle to predict responses to therapies and frequently relapse.
  • The review highlights recent advancements in omics technologies that can enhance the understanding of AML's biological mechanisms, offering insights for better diagnosis, prognosis, and potential new therapies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!