The formation and precise positioning of axons and dendrites are crucial for the development of neural circuits. Although juxtracrine signaling via cell-cell contact is known to influence these processes, the specific structures and mechanisms regulating neuronal process positioning within the central nervous system (CNS) remain to be fully identified. Our study investigates motoneuron 24 (MN24) in the embryonic CNS, which is characterized by a complex yet stereotyped axon projection pattern, known as 'axonal routing.' In this motoneuron, the primary dendritic branches project laterally toward the midline, specifically emerging at the sites where axons turn. We observed that Scp2-positive neurons contribute to the lateral fascicle structure in the ventral nerve cord (VNC) near MN24 dendrites. Notably, the knockout of the Down syndrome cell adhesion molecule () results in the loss of dendrites and disruption of proper axonal routing in MN24, while not affecting the formation of the fascicle structure. Through cell-type specific knockdown and rescue experiments of dscam1, we have determined that the interaction between MN24 and Scp2-positive fascicle, mediated by Dscam1, promotes the development of both dendrites and axonal routing. Our findings demonstrate that the holistic configuration of neuronal structures, such as axons and dendrites, within single motoneurons can be governed by local contact with the adjacent neuron fascicle, a novel reference structure for neural circuitry wiring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11030417PMC
http://dx.doi.org/10.1101/2024.04.08.588591DOI Listing

Publication Analysis

Top Keywords

axonal routing
12
axons dendrites
8
fascicle structure
8
fascicle
5
dendrites
5
adjacent neuronal
4
neuronal fascicle
4
fascicle guides
4
guides motoneuron
4
motoneuron dendritic
4

Similar Publications

The formation and precise positioning of axons and dendrites are crucial for the development of neural circuits. Although juxtacrine signaling via cell-cell contact is known to influence these processes, the specific structures and mechanisms regulating neuronal process positioning within the central nervous system (CNS) remain to be fully identified. Our study investigates motoneuron 24 (MN24) in the embryonic CNS, which is characterized by a complex yet stereotyped axon projection pattern, known as "axonal routing.

View Article and Find Full Text PDF

Mutations in the human Ocular albinism type-1 gene are associated with abnormal retinal pigment epithelium (RPE) melanogenesis and poor binocular vision resulting from misrouting of ipsilateral retinal ganglion cell (iRGC) axons to the brain. We studied the latter using wild-type (WT) and mouse eyes. At embryonic stages, the WT RPE-specific Oa1 protein signals through cAMP/Epac1-Erk2-CREB.

View Article and Find Full Text PDF

The formation and precise positioning of axons and dendrites are crucial for the development of neural circuits. Although juxtracrine signaling via cell-cell contact is known to influence these processes, the specific structures and mechanisms regulating neuronal process positioning within the central nervous system (CNS) remain to be fully identified. Our study investigates motoneuron 24 (MN24) in the embryonic CNS, which is characterized by a complex yet stereotyped axon projection pattern, known as 'axonal routing.

View Article and Find Full Text PDF

Predictive processing theories conceptualize neocortical feedback as conveying expectations and contextual attention signals derived from internal cortical models, playing an essential role in the perception and interpretation of sensory information. However, few predictive processing frameworks outline concrete mechanistic roles for the corticothalamic (CT) feedback from layer 6 (L6), despite the fact that the number of CT axons is an order of magnitude greater than that of feedforward thalamocortical (TC) axons. Here we review the functional architecture of CT circuits and propose a mechanism through which L6 could regulate thalamic firing modes (burst, tonic) to detect unexpected inputs.

View Article and Find Full Text PDF

The sub-regions of the hippocampal formation are essential for episodic learning and memory formation, yet the spike dynamics of each region contributing to this function are poorly understood, in part because of a lack of access to the inter-regional communicating axons. Here, we reconstructed hippocampal networks confined to four subcompartments in 2D cultures on a multi-electrode array that monitors individual communicating axons. In our novel device, somal, and axonal activity was measured simultaneously with the ability to ascertain the direction and speed of information transmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!