Pharmacologic inhibitors of cellular hydroxylase oxygen sensors are protective in multiple preclinical models of inflammation. However, the molecular mechanisms underlying this regulation are only partly understood, preventing clinical translation. We previously proposed a new mechanism for cellular oxygen sensing: oxygen-dependent, (likely) covalent protein oligomer (oxomer) formation. Here, we report that the oxygen sensor factor inhibiting HIF (FIH) forms an oxomer with the NF-κB inhibitor β (IκBβ). The formation of this protein complex required FIH enzymatic activity and was prevented by pharmacologic inhibitors. Oxomer formation was highly hypoxia-sensitive and very stable. No other member of the IκB protein family formed an oxomer with FIH, demonstrating that FIH-IκBβ oxomer formation was highly selective. In contrast to the known FIH-dependent oxomer formation with the deubiquitinase OTUB1, FIH-IκBβ oxomer formation did not occur via an IκBβ asparagine residue, but depended on the amino acid sequence VAERR contained within a loop between IκBβ ankyrin repeat domains 2 and 3. Oxomer formation prevented IκBβ from binding to its primary interaction partners p65 and c-Rel, subunits of NF-κB, the master regulator of the cellular transcriptional response to pro-inflammatory stimuli. We therefore propose that FIH-mediated oxomer formation with IκBβ contributes to the hypoxia-dependent regulation of inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110689PMC
http://dx.doi.org/10.1080/10985549.2024.2338727DOI Listing

Publication Analysis

Top Keywords

oxomer formation
32
oxomer
10
formation
9
nf-κb inhibitor
8
inhibitor iκbβ
8
pharmacologic inhibitors
8
formation highly
8
fih-iκbβ oxomer
8
iκbβ
6
selective hypoxia-sensitive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!