Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Graph domain adaptation (GDA) aims to address the challenge of limited label data in the target graph domain. Existing methods such as UDAGCN, GRADE, DEAL, and COCO for different-level (node-level, graph-level) adaptation tasks exhibit variations in domain feature extraction, and most of them solely rely on representation alignment to transfer label information from a labeled source domain to an unlabeled target domain. However, this approach can be influenced by irrelevant information and usually ignores the conditional shift of the downstream predictor. To effectively address this issue, we introduce a target-oriented unsupervised graph domain adaptive framework for graph adaptation called TO-UGDA. Particularly, domain-invariant feature representations are extracted using graph information bottleneck. The discrepancy between two domains is minimized using an adversarial alignment strategy to obtain a unified feature distribution. Additionally, the meta pseudo-label is introduced to enhance downstream adaptation and improve the model's generalizability. Through extensive experimentation on real-world graph datasets, it is proved that the proposed framework achieves excellent performance across various node-level and graph-level adaptation tasks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576983 | PMC |
http://dx.doi.org/10.1038/s41598-024-59890-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!