Rhipicephalus (Boophilus) microplus causes considerable livestock production losses. Knowledge of the traits that influence tick resistance contributes to the development of breeding strategies designed to improve herd productivity. Within this context, this study evaluated the resistance of Caracu, a tropically adapted cattle breed, to R. microplus. Tick count, hair length, coat thickness, and coat color were evaluated in 202 naturally tick-infested females (cows and heifers) over a period of 18 months. Blood samples were collected from all animals during the winter season for hematological analysis. Data were analyzed using Pearson correlations, generalized linear models, and principal component analysis. Correlation coefficients of tick count with coat color, coat thickness, and hair length were estimated within each season. Hematological parameters were only included in the winter season analysis and were analyzed by the restricted maximum likelihood method using log-transformed data. No differences in blood parameters were observed between animals with and without ticks. However, tick count was negatively correlated with erythrocytes (-0.29) and hematocrit (-0.24) and positively correlated with mean corpuscular hemoglobin (0.21) and mean corpuscular hemoglobin concentration (0.25). These findings suggest that higher tick counts lead to a decrease in erythrocytes but also to an increase in the amount of hemoglobin per erythrocyte, which could reduce the damage caused by low erythrocyte levels due to tick hematophagy, delaying or preventing anemia. Although tick infestation on pasture was demonstrated by the infestation of all staff members during herd management, none of the animals exhibited high tick counts, providing evidence of resistance of Caracu animals to R. microplus. Tick infestation was influenced by age class (cows > heifers), season (spring and summer > fall and winter), coat thickness (>1.5 mm > <1.5 mm), and hair length (>6 mm > <6 mm). Three components were extracted by principal component analysis, which accounted for 69.46% of data variance. The findings of this study will contribute to the development of efficient strategies aimed at reducing economic losses due to tick infestation and could be applied in animal breeding to select for tick resistance traits, reducing chemical control strategies and consequently improving sustainable livestock production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vprsr.2024.101017DOI Listing

Publication Analysis

Top Keywords

tick infestation
12
tick count
12
coat thickness
12
tick
10
tropically adapted
8
cattle breed
8
resistance caracu
8
microplus tick
8
hair length
8
coat color
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!