Effects of soil metal(loid)s pollution on microbial activities and environmental risks in an abandoned chemical smelting site.

J Environ Sci (China)

School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China; Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France.

Published: September 2024

AI Article Synopsis

  • Abandoned chemical smelting sites pose significant environmental risks due to the presence of toxic substances, with soil samples analyzed for metal(loid) content revealing high ecological risk indices that vary with depth.
  • Soil depth D-1 showed the highest risk, primarily attributed to cadmium (Cd), while other metals like arsenic (As) contributed less to the overall risk.
  • The study utilized a modified pollution risk index to assess contamination levels, and findings indicated low microbial activity in heavily contaminated soils, suggesting heavy metal stress impacts on microbial health.

Article Abstract

Abandoned chemical smelting sites containing toxic substances can seriously threaten and pose a risk to the surrounding ecological environment. Soil samples were collected from different depths (0 to 13 m) and analyzed for metal(loid)s content and fractionation, as well as microbial activities. The potential ecological risk indices for the different soil depths (ordered from high to low) were: 1 m (D-1) > surface (S-0) > 5 m (D-5) > 13 m (D-13) > 9 m (D-9), ranging between 1840.65-13,089.62, and representing extremely high environmental risks, of which Cd (and probably not arsenic) contributed to the highest environmental risk. A modified combined pollution risk index (MCR) combining total content and mobile proportion of metal(loid)s, and relative toxicities, was used to evaluate the degree of contamination and potential environmental risks. For the near-surface samples (S-0 and D-1 layers), the MCR considered that As, Cd, Pb, Sb, and Zn achieved high and alarming degrees of contamination, whereas Fe, Mn, and Ti were negligible or low to moderate pollution degrees. Combined microcalorimetry and enzymatic activity measurements of contaminated soil samples were used to assess the microbial metabolic activity characteristics. Correlation analysis elucidated the relationship between metal(loid)s exchangeable fraction or content and microbial activity characteristics (p < 0.05). The microbial metabolic activity in the D-1 layer was low presumably due to heavy metal stress. Enzyme activity indicators and microcalorimetric growth rate (k) measurements were considered sensitive indicators to reflect the soil microbial activities in abandoned chemical smelting sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2023.08.011DOI Listing

Publication Analysis

Top Keywords

microbial activities
12
environmental risks
12
abandoned chemical
12
chemical smelting
12
smelting sites
8
soil samples
8
microbial metabolic
8
metabolic activity
8
activity characteristics
8
microbial
6

Similar Publications

Deciphering the impact of NOS-derived NO on nitrogen metabolism and carbon flux in the heterocytous cyanobacterium Aphanizomenon flos-aquae 2012/KM1/D3.

Plant Physiol Biochem

January 2025

Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:

Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.

View Article and Find Full Text PDF

To address the challenge of antibiotic-containing wastewater, a novel micromagnetic carrier-modified integrated fixed-film activated sludge system (MC-IFAS) was developed for treating tetracycline (TC)-containing swine wastewater in this study. The magnetic effects of the MC significantly enhanced TC removal by improving TC biosorption and biodegradation in both the suspended activated sludge and the carrier-attached biofilm in the MC-IFAS. The increased electrostatic attraction and number of binding sites in both the activated sludge and the biofilm enhanced their TC biosorption capacities, particularly in the activated sludge.

View Article and Find Full Text PDF

This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells.

View Article and Find Full Text PDF

Dietary contamination with aflatoxin B (AFB), which can lead to severe liver damage, poses a great threat to livestock and poultry breeding and has detrimental impacts on food safety. Selenomethionine (SeMet), with anti-inflammatory, antioxidative, and detoxifying effects, is regarded as a beneficial food additive. However, whether SeMet can reduce AFB-induced liver injury and intestinal microbial disorders in rabbits remains to be revealed.

View Article and Find Full Text PDF

The clinical application of doxorubicin (DOX) is limited due to its cardiotoxicity, which is primarily attributed to its interaction with iron in mitochondria, leading to lipid peroxidation and myocardial ferroptosis. This study aimed to investigate the role of the gut microbiota-derived metabolite, indole-3-lactic acid (ILA), in mitigating DOX-induced cardiotoxicity (DIC). Cardiac function, pathological changes, and myocardial ferroptosis were assessed in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!