Selenium (Se) in paddy rice is one of the significant sources of human Se nutrition. However, the effect of arsenic (As) pollution in soil on the translocation of Se species in rice plants is unclear. In this research, a pot experiment was designed to examine the effect of the addition of 50 mg As/kg soil as arsenite or arsenate on the migration of Se species from soil to indica Minghui 63 and Luyoumingzhan. The results showed that the antagonism between inorganic As and Se was closely related to the rice cultivar and Se oxidation state in soil. Relative to the standalone selenate treatment, arsenite significantly (p < 0.05) decreased the accumulation of selenocystine, selenomethionine and selenate in the roots, stems, sheaths, leaves, brans and kernels of both cultivars by 21.4%-100.0%, 40.0%-100.0%, 41.0%-100%, 5.4%-96.3%, 11.3%-100.0% and 26.2%-39.7% respectively, except for selenocystine in the kernels of indica Minghui 63 and selenomethionine in the leaves of indica Minghui 63 and the stems of indica Luyoumingzhan. Arsenate also decreased (p < 0.05) the accumulation of selenocystine, selenomethionine and selenate in the roots, stems, brans and kernels of both cultivars by 34.9%-100.0%, 30.2%-100.0%, 11.3%-100.0% and 5.6%-39.6% respectively, except for selenate in the stems of indica Minghui 63. However, relative to the standalone selenite treatment, arsenite and arsenate decreased (p < 0.05) the accumulation of selenocystine, selenomethionine and selenite only in the roots of indica Minghui 63 by 45.5%-100.0%. Our results suggested that arsenite and arsenate had better antagonism toward Se species in selenate-added soil than that in selenite-added soil; moreover, arsenite had a higher inhibiting effect on the accumulation of Se species than arsenate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2023.07.024 | DOI Listing |
J Integr Plant Biol
December 2024
Marine and Agricultural Biotechnology Laboratory, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
J Environ Sci (China)
September 2024
Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Key Laboratory for Medicinal Plant Chemistry and Chemical Biology, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
Selenium (Se) in paddy rice is one of the significant sources of human Se nutrition. However, the effect of arsenic (As) pollution in soil on the translocation of Se species in rice plants is unclear. In this research, a pot experiment was designed to examine the effect of the addition of 50 mg As/kg soil as arsenite or arsenate on the migration of Se species from soil to indica Minghui 63 and Luyoumingzhan.
View Article and Find Full Text PDFLife (Basel)
June 2021
Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China.
Grain shape is one of the most important and complex traits determining the grain yield in rice. In this study, we discovered two rice mutants with defective shape spikelets, designated as (pepper-shaped husk 1-1/2), which were both isolated from the tissue-culture-regenerated plants of cultivar Minghui 86. The two mutants showed the same mutant phenotypes, containing pepper-shaped spikelets; shorter, smaller and compact panicles; very low seed-setting rate; high percentage of split grains; and lower grain width.
View Article and Find Full Text PDFMol Plant
October 2021
State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China. Electronic address:
The ultimate goal of genome assembly is a high-accuracy gapless genome. Here, we report a new assembly pipeline that is used to produce a gapless genome for the indica rice cultivar Minghui 63. The resulting 397.
View Article and Find Full Text PDFMol Plant
October 2021
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Guangxi University, Nanning 530004, China. Electronic address:
Rice (Oryza sativa), a major staple throughout the world and a model system for plant genomics and breeding, was the first crop genome sequenced almost two decades ago. However, reference genomes for all higher organisms to date contain gaps and missing sequences. Here, we report the assembly and analysis of gap-free reference genome sequences for two elite O.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!