Marein, a novel natural product for restoring chemo-sensitivity to cancer cells through competitive inhibition of ABCG2 function.

Biochem Pharmacol

Department of Pharmacy, Taicang TCM Hospital Affiliated to Nanjing University of Chinese Medicine (Taicang Hospital of Traditional Chinese Medicine), Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Jiangsu, China. Electronic address:

Published: October 2024

The pivotal roles of ATP-binding cassette (ABC) transporters in drug resistance have been widely appreciated. Here we report that marein, a natural product from Coreopsis tinctoria Nutt, is a potent chemo-sensitizer in drug resistant cancer cells overexpressing ABCG2 transporter. We demonstrate that marein can competitively inhibit efflux activity of ABCG2 protein and increase the intracellular accumulation of the chemotherapeutic drugs that belong to substrate of this transporter. We further show that marein can bind to the conserved amino acid residue F439 of ABCG2, a critical site for drug-substrate interaction. Moreover, marein can significantly sensitize the ABCG2-expressing tumor cells to chemotherapeutic drugs such as topotecan, mitoxantrone, and olaparib. This study reveals a novel role and mechanism of marein in modulating drug resistance, and may have important implications in treatment of cancers that are resistant to chemotherapeutic drugs that belong to the substrates of ABCG2 transporters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2024.116219DOI Listing

Publication Analysis

Top Keywords

chemotherapeutic drugs
12
natural product
8
cancer cells
8
drug resistance
8
drugs belong
8
marein
6
abcg2
5
marein novel
4
novel natural
4
product restoring
4

Similar Publications

Hepatocellular carcinoma (HCC) is the most common form of liver cancer in humans, with an increasing incidence worldwide. The current study aimed to explore the molecular mechanisms that inhibit the proliferation of HepG2 cells, a hepatoblastoma-derived cell line. MSC-derived exosomes (UC-MSCs) were prepared with a median particle size (N50) of 135.

View Article and Find Full Text PDF

Heterologous protein expression often faces significant challenges, particularly when the target protein has posttranslational modifications, is toxic, or is prone to misfolding. These issues can result in low expression levels, aggregation, or even cell death. Such problems are exemplified by the expression of phospholipase p37, a critical target for chemotherapeutic drugs against pathogenic human orthopoxviruses, including monkeypox and smallpox viruses.

View Article and Find Full Text PDF

Proteome-Wide Mendelian Randomization Analysis to Identify Potential Plasma Biomarkers and Therapeutic Targets for Epithelial Ovarian Cancer Subtypes.

Int J Womens Health

December 2024

Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China.

Background: Epithelial ovarian cancer (EOC) remains an unmet medical challenge due to its insidious onset, atypical symptoms, and increasing resistance to conventional chemotherapeutic agents. It is imperative to explore novel biomarkers and generate innovative target drugs.

Methods: To identify potential proteins with causal association to EOC subtypes, we conducted a Mendelian Randomization (MR) analysis using 15,419 protein quantitative trait loci (pQTLs) associated with 2015 proteins.

View Article and Find Full Text PDF

Chemotherapy is still one of the major approaches in triple-negative breast cancer (TNBC) treatment. The development of new formulations for classic chemotherapeutic drugs remains interests in studies. Camptothecin (CPT) is powerful antitumor agents in TNBC treatment though its clinic applications are limited by its low water solubility and systemic toxicity.

View Article and Find Full Text PDF

Opposing effects of mycotoxins alternariol and deoxynivalenol on the immunomodulatory effects of oxaliplatin and triapine.

Toxicology

December 2024

Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Waehringerstrasse 38, 1090 Vienna, Austria.

Mycotoxin occurrence in food worldwide is estimated to increase due to climate change. Moreover, studies on how these food contaminants interfere with medications and especially anticancer therapies are rare. With the rise of anticancer immunotherapies, particularly mycotoxins with immunomodulatory activity, such as alternariol (AOH) or deoxynivalenol (DON), are of great concern.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!