Per- and poly-fluoroalkyl substances (PFAS) are synthetic chemicals widely used in everyday products, causing elevated concentrations in drinking water and posing a global challenge. While adsorption methods are commonly employed for PFAS removal, the substantial cost and environmental footprint of commercial adsorbents highlight the need for more cost-effective alternatives. Additionally, existing adsorbents exhibit limited effectiveness, particularly against diverse PFAS types, such as short-chain PFAS, necessitating modifications to enhance adsorption capacity. Biochar can be considered a cost-effective and eco-friendly alternative to conventional adsorbents. With abundant feedstocks and favorable physicochemical properties, biochar shows significant potential to be applied as an adsorbent for removing contaminants from water. Despite its effectiveness in adsorbing different inorganic and organic contaminants from water environments, some factors restrict its effective application for PFAS adsorption. These factors are related to the biochar properties, and characteristics of PFAS, as well as water chemistry. Therefore, some modifications have been introduced to overcome these limitations and improve biochar's adsorption capacity. This review explores the preparation conditions, including the pyrolysis process, activation, and modification techniques applied to biochar to enhance its adsorption capacity for different types of PFAS. It addresses critical questions about the adsorption performance of biochar and its composites, mechanisms governing PFAS adsorption, challenges, and future perspectives in this field. The surge in research on biochar for PFAS adsorption indicates a growing interest, making this timely review a valuable resource for future research and an in-depth exploration of biochar's potential in PFAS remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.142088DOI Listing

Publication Analysis

Top Keywords

adsorption capacity
12
pfas adsorption
12
pfas
10
per- poly-fluoroalkyl
8
poly-fluoroalkyl substances
8
adsorption
8
enhance adsorption
8
contaminants water
8
biochar
7
treatment aqueous
4

Similar Publications

Optimal CO intake in metastable water film in mesoporous materials.

Nat Commun

December 2024

Department of Civil and Environmental Engineering, and Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hong Kong, China.

The feasibility of carbon mineralization relies on the carbonation efficiency of CO-reactive minerals, which is largely governed by the water content and state within material mesopores. Yet, the pivotal role of confined water in regulating carbonation efficiency at the nanoscale is not well understood. Here, we show that the maximum CO intake occurs at an optimal relative humidity (RH) when capillary condensation initiates within the hydrophilic mesopores.

View Article and Find Full Text PDF

Recycling e-waste into gold-loaded covalent organic framework catalysts for terminal alkyne carboxylation.

Nat Commun

December 2024

Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, USA.

The rising demand for gold requires innovative methods for its recovery from e-waste. Here we present the synthesis of two tetrazine-based vinyl-linked covalent organic frameworks: TTF-COF and TPE-COF that adsorb gold ions and nanoparticles and catalyze the carboxylation of terminal alkynes. These covalent organic frameworks have low band gaps and high photocurrent responses.

View Article and Find Full Text PDF

Efficient removal of Sb(III) from aqueous solution using TiO precipitated onto waste herb-residue biochar.

Environ Technol

December 2024

College of Resources and Environmental Engineering, Guizhou University, Guiyang, People's Republic of China.

Increasing antimony (Sb) pollution has become a global concern, but there is still a lack of economically efficient adsorbents for its remediation. In this study, a novel remediation material was developed by precipitating TiO onto waste herb-residue biochar (named TBC). The effectiveness and adsorption mechanisms of the material for Sb(III) removal were investigated through adsorption experiments, and the enhancement pathway of traditional herb decoction on the effectiveness of modified biochar was analyzed.

View Article and Find Full Text PDF

Insights and perspectives of chitosan-based hydrogels for the removal of heavy metals and dyes from wastewater.

Int J Biol Macromol

December 2024

School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266525, China. Electronic address:

Water pollution has become an increasingly serious issue, necessitating the design and development of more effective wastewater treatment methods. Chitosan-based hydrogels, owing to their unique structural and chemical properties, have demonstrated high efficiency in removing contaminants. However, the application remains restricted by the scarcity of effective adsorption sites and limited environmental stability.

View Article and Find Full Text PDF

ZnCl-Doped Mesoporous Silica Nanoparticles Prepared via a Simple One-Pot Method for Highly Efficient Nitrate Removal.

Environ Res

December 2024

Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120 Thailand. Electronic address:

Nitrate is a crucial nutrient in the natural nitrogen cycle. However, human activities have elevated nitrate levels in aquatic ecosystems beyond natural thresholds, posing risks to human health and the environment. In this work, ZnCl-doped mesoporous silica nanoparticles (ZnCl@MSN) were synthesized using a one-pot preparation method, leading to a streamlined process with reduced time and energy consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!