Discharging improperly treated oily-produced water (OPW) into the environment can have significant negative impacts on environmental sustainability. It can lead to pollution of water sources, damage to aquatic ecosystems and potential health hazards for individuals living in the affected areas. Ceramic hollow fiber membrane (CHFM) technology is one of the most effective OPW treatment methods for achieving high oil removal efficiency while maintaining membrane water permeability. In this study, low-cost calcium bentonite hollow fiber membranes (CaB-HFMs) were prepared from high-alumina calcium bentonite clay with various preparation parameters, including calcium bentonite content, sintering temperature, air gap distance and bore fluid rate. The prepared CaB-HFMs were then subjected to characterization using scanning electron microscopy (SEM), a three-point bending test, porosity, average pore size, hydraulic resistance and flux recovery ratio (FRR) analysis. Statistical analysis employing central composite design (CCD) assessed the interaction between the parameters and their effect on CaB-HFM water permeability and oil removal efficiency. Higher ceramic content and sintering temperature led to reduced porosity, smaller pore size and higher mechanical strength. In contrast, increasing the air gap distance and bore fluid rate exhibit different trends, resulting in higher porosity and pore size, along with weaker mechanical strength. Other than that, all of the CaB-HFMs displayed low hydraulic resistance (<0.01 m h.bar/L) and high FRR value (up to 95.2%). Based on CCD, optimal conditions for CaB-HFM were determined as follows: a calcium bentonite content of 50 wt.%, a sintering temperature of 1096 °C, an air gap distance of 5 cm and a bore fluid rate of 10 mL/min, with the desirability value of 0.937. Notably, the optimized CaB-HFMs demonstrated high oil removal efficiency of up to 99.7% with exceptional water permeability up to 535.2 L/m.h.bar. The long-term permeation study also revealed it was capable of achieving a high average water permeation and a stable oil rejection performance of 522.15 L/m.h.bar and 99.8%, respectively, due to their inherent hydrophilic and antifouling characteristics, making it practical for OPW treatment application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.120894DOI Listing

Publication Analysis

Top Keywords

calcium bentonite
16
hollow fiber
12
pore size
12
oily-produced water
8
high-alumina calcium
8
bentonite hollow
8
fiber membrane
8
oil removal
8
removal efficiency
8
water permeability
8

Similar Publications

In the course of pipe jacking construction, the carrying-soil effect frequently arises, influenced by factors such as excavation unloading, ongoing disturbance from successive pipe sections, and the progressive accumulation of soil adhesion. The pipe jacking slurry serves as a critical agent for friction reduction and strata support, essential for the secure advancement of the construction process. This study introduces the Microbial-Induced Calcium Carbonate Precipitation (MICP) technology into the realm of pipe jacking slurry, aiming to enhance its friction-reduction capabilities and the stability of the soil enveloping the pipe.

View Article and Find Full Text PDF

Adsorption of Cr(VI) Using Organoclay/Alginate Hydrogel Beads and Their Application to Tannery Effluent.

Gels

November 2024

Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, km 9 vía al Aeropuerto, Manizales 170003, Colombia.

The tanning industry is among the most environmentally harmful activities globally due to the pollution of lakes and rivers from its effluents. Hexavalent chromium, a metal in tannery effluents, has adverse effects on human health and ecosystems, requiring the development of removal techniques. This study assessed the efficacy of organobentonite/alginate hydrogel beads in removing Cr(VI) from a fixed-bed adsorption column system.

View Article and Find Full Text PDF
Article Synopsis
  • Drilling wells in unconsolidated formations aims to improve water extraction efficiency but faces challenges like potential well collapse when targeting greater depths and larger diameters.
  • Experimental investigations explore the effectiveness of various drilling fluids and additives, including bentonite, PAC, Xanthan Gum, calcium carbonate, and aluminum chloride, to enhance wellbore stability in aquifers.
  • Results show that calcium carbonate effectively forms filter cakes that improve stability, while certain formulations like 2% aluminum chloride lead to thicker, but more permeable filter cakes, impacting filtration losses and well performance.
View Article and Find Full Text PDF

High-performance conductive double-network hydrogel base on sodium carboxymethyl cellulose for multifunctional wearable sensors.

Carbohydr Polym

February 2025

Guilin University of Technology, Coll Chem & Bioengn, Guilin 541004, Guangxi, China; Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.

Sodium carboxymethyl cellulose showed great potential in wearable intelligent electronic devices due to its low price and good biocompatibility. This research aimed to develop a novel conductive hydrogel with stretchable, self-healing, self-adhesive, antibacterial, 3D printable properties, for the development of multifunctional flexible electronic materials based on sodium carboxymethyl cellulose. A multifunctional conductive hydrogel based on sodium carboxymethyl cellulose (SCMC) was synthesized by simple polymerization of SCMC, acrylic acid (AA) and alkaline calcium bentonite (AC-Bt).

View Article and Find Full Text PDF

Fabrication of nanoparticle-reinforced composite hydrogel for improved durability, antifouling, and thrombosis-resistance in arteriovenous grafts.

Colloids Surf B Biointerfaces

November 2024

School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China; CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, PR China. Electronic address:

Article Synopsis
  • Arteriovenous grafts, used in hemodialysis, often face serious issues like thrombosis and infections that hinder their effectiveness.
  • Researchers created a surface-modified nanohybrid hydrogel by combining clay nanoparticles coated with zwitterionic sulfobetaine methacrylate onto a sodium alginate/polyvinyl alcohol base.
  • This new hydrogel demonstrated improved mechanical strength, biocompatibility, and antifouling properties, making it a promising option for use in blood-contacting implants.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!