Pulse-modulated CW laser heat deposition modulates the darkness or the transparency of an aggregated medium in the high signal optical regimen. A recently reported work found that transient optical responses of molecular aggregates can be different depending on whether the sample is excited with a laser wavelength tuned within the absorption band of the monomer or within the absorption band of the aggregates. The different transient responses were attributed to different dynamic processes during the laser-induced disassembling of the molecular aggregates and may have implications in the field of organic electronics and optical devices, such as optical logical gates, optical power limiters and all-optical switching. In this paper laser beams with wavelengths of 663 nm and 532 nm were used to produce sudden changes in the thermodynamic equilibrium of the aggregation states of the ortho-toluidine blue dye, which allowed to observe the occurrence of the avalanche - mediated transient phenomenon in the laser-induced disassembling of ortho-toluidine blue (TBO) aggregates. A double exponential model was adjusted to the registered transient data. The obtained values for the fast components of the transient time responses of ortho-toluidine blue dye, for the studied concentrations, ranged from ∼ 6.5 to 9.5 ms at 532 nm, and from ∼ 43 to 48 ms at 663 nm. A single beam experiment was employed to evaluate the performance of the ortho-toluidine blue dye in a beam power-damping device, driven by the simultaneous and cooperative actions of the laser induced disassembling of aggregated dye units and the thermal lensing effect. It was found that the phenomenon of laser-induced dye disassembling of TBO, acting cooperatively with the thermal lensing effect, damps the laser beam power faster than the thermal lensing phenomenon alone. In addition, the results showed that the speed of the laser beam power-damping is dye dependent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.124291 | DOI Listing |
Sci Rep
December 2024
Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, India.
The fabricating of extremely effective, economical, ecologically safe, and reusable nanoparticle (NP) catalysts for the removal of water pollution is urgently needed. This study, spectroscopically optimizes the process parameters for the biogenic synthesis of AgNP catalysts using Cledrdendrum infortunatum leaf extract. The optimization of several synthesis parameters was systematically studied using UV-Vis spectroscopy to identify the ideal conditions for AgNPs formation.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India. Electronic address:
This study presents an eco-friendly, cost-effective approach for synthesizing highly efficient nanocatalysts with the help of organic waste. Iron nanoparticles (INPs) were synthesized from aqueous extracts of potato, potato peel, and potato leaf and were evaluated for their photocatalytic efficiency for the degradation of methylene blue dye. X-ray Diffraction (XRD) confirmed FeO nanoparticles cubic crystal structure with the smallest crystallite size (9.
View Article and Find Full Text PDFThorac Cancer
December 2024
Breast Disease Center, Peking University People's Hospital, Beijing, China.
Background: Sentinel lymph node biopsy (SLNB) using radioisotope tracer plus blue dye is the gold standard after neoadjuvant chemotherapy (NAC) in initially cN1 breast cancer patients, but clinical use still has limitations. This study aims to examine diagnostic performance of dual indocyanine green (ICG) and methylene blue tracing for SLNB in patients who have completed NAC for breast cancer with initially cN1 disease.
Methods: Adult women (20-80 years of age) scheduled to undergo NAC for biopsy-proven cT0-3N1M0 primary invasive breast cancer were consecutively enrolled in this prospective, multicenter, cohort study.
Sci Data
December 2024
Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
Persicaria tinctoria (2n = 40) is an important traditional medicinal plant and natural dye source within the genus Persicaria. P. tinctoria has been utilized for its antibacterial, antiviral, anti-inflammatory, and tumor treatment properties.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
Modifying ZnO nanorods with graphene oxide (GO) is crucial for enhancing photocatalytic degradation by boosting the concentration of reactive oxygen species (ROS) in the reaction medium. In this study, we present a straightforward chemical synthesis of ZnO nanorods embedded on GO, forming a novel nanocomposite, GOZ. This composite serves as an efficient photocatalyst for the sunlight-driven degradation of methylene blue (MB) and ciprofloxacin (CIP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!