Scope: Bile acids play a crucial role in lipid absorption and the regulation of lipid, glucose, and energy homeostasis. Coenzyme Q10 (CoQ10), a lipophilic antioxidant, has been recognized for its positive effects on obesity and related glycolipid metabolic disorders. However, the relationship between CoQ10 and bile acids has not yet been evaluated.

Methods And Results: This study assesses the impact of CoQ10 treatment on bile acid metabolism in mice on a high-fat diet using Ultra-Performance Liquid Chromatography-tandem Mass Spectrometry. CoQ10 reverses the reduction in serum and colonic total bile acid levels and alters the bile acid profile in mice that are caused by a high-fat diet. Seventeen potential targets of CoQ10 in bile acid metabolism are identified by network pharmacology, with six being central to the mechanism. Molecular docking shows a high binding affinity of CoQ10 to five of these key targets. Further analyses indicate that farnesoid X (FXR) receptor and Takeda G-protein coupled receptor 5 (TGR5) may be crucial targets for CoQ10 to regulate bile acid metabolism and exert beneficial effects.

Conclusion: This study sheds light on the impact of CoQ10 in bile acids metabolism and offers a new perspective on the application of CoQ10 in metabolic health.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.202400147DOI Listing

Publication Analysis

Top Keywords

bile acid
24
acid metabolism
16
bile acids
12
coq10 bile
12
bile
9
coq10
9
coenzyme q10
8
network pharmacology
8
molecular docking
8
impact coq10
8

Similar Publications

Bile-Derived cfDNA of Syncytin-1 and SLC7A11 as a Potential Molecular Marker for Early Diagnosis of Cholangiocarcinoma.

J Gastrointest Cancer

January 2025

Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China.

Purpose: Liquid biopsy technology has received widespread attention in the early diagnosis of cholangiocarcinoma (CCA).

Methods: We collected bile samples from 48 patients with CCA and 48 patients with gallstones at Shandong Provincial third Hospital. We quantified bile circulating free DNA (cfDNA) of syncytin-1 and SLC7A11, calculated the correlation between syncytin-1 and SLC7A11 expression and clinical parameters by Spearman rank correlation, plotted Receiver Operating Characteristic (ROC) curves, and compared the Area Under Curve (AUC) values to explored early diagnostic utility in patients.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a degenerative neurological disorder defined by the formation of β-amyloid (Aβ) plaques and neurofibrillary tangles within the brain. Current pharmacological treatments for AD only provide symptomatic relief, and there is a lack of definitive disease-modifying therapies. Chemical chaperones, such as 4-Phenylbutyric acid (4PBA) and Tauroursodeoxycholic acid, have shown neuroprotective effects in animal and cell culture models.

View Article and Find Full Text PDF

Background: The diagnostic criteria of neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) have not been established due to non-specific clinical manifestations, and our understanding on the treatment outcome is still limited. We aim to investigate the biochemical characteristics, genetic variants, and treatment outcome of NICCD patients.

Methods: We compared the nutritional status and biochemical characteristics of 55 NICCD infants and 27 idiopathic neonatal cholestasis (INC) infants.

View Article and Find Full Text PDF

Background: Cholestasis plays a critical role in sepsis-associated liver injury (SALI). Intestine-derived fibroblast growth factor 19 (FGF19) is a key regulator for bile acid homeostasis. However, the roles and underlying mechanisms of FGF19 in SALI are still unclear.

View Article and Find Full Text PDF

Multi-omics analysis reveals the anti-fatigue mechanism of BCAA-enriched egg white peptides: the role of the gut-muscle axis.

Food Funct

January 2025

Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, Changchun, 130062, People's Republic of China.

Bioactive peptides rich in branched-chain amino acids (BCAAs) are an effective way to alleviate fatigue conditions, but the deep mechanism remains unclear. This study investigated the anti-fatigue effect of branched-chain amino acid-enriched egg white peptides (BEWPs) through the gut-muscle axis by gut bacteria and untargeted metabolomic analyses. The results demonstrated that BEWPs enhanced exercise endurance and strength by also promoting gastrocnemius development in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!