A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Purity control of simulated moving bed based on advanced fuzzy controller. | LitMetric

Purity control of simulated moving bed based on advanced fuzzy controller.

Sci Rep

Key Laboratory of Nondestructive Testing, Fujian Ploytechnic Normal University, Fujian Province University, Fuzhou, FuJian, China.

Published: April 2024

Simulated moving bed (SMB) technology is considered one of the most successful techniques in chromatographic separation. However, due to the nonlinearity caused by discrete events and sensitivity to numerous separation performance parameters, purity control in SMB systems has been a challenging issue. Fuzzy controllers are increasingly popular in industrial environments due to their simplicity and effectiveness in handling nonlinearity. However, traditional fuzzy controllers used in industry often overlook considerations of error acceleration, resulting in slight deviations from target values under steady-state conditions and oscillatory behavior when system parameters change. This study proposes an advanced fuzzy controller, where in a series of experiments, the purity control targets for component B are set at 94% and 96%, and for component A are set at 96% and 96%, respectively. Experimental results indicate that the advanced fuzzy controller achieves higher precision, with an average deviation of around 0.1%, for both components B and A. Importantly, under variations in adsorbent parameter(from 0.01 to 0.03), feed concentration(from 4.5 to 5.2), and switching time(from 178 to 182), the experimental results demonstrate smoother control with the advanced controller, particularly when oscillations occur with conventional fuzzy controllers due to switching time variations, indicating robust control with the advanced fuzzy controller.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576947PMC
http://dx.doi.org/10.1038/s41598-024-59847-1DOI Listing

Publication Analysis

Top Keywords

advanced fuzzy
16
fuzzy controller
16
purity control
12
fuzzy controllers
12
simulated moving
8
moving bed
8
component set
8
control advanced
8
fuzzy
7
advanced
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!