We theoretically describe and experimentally demonstrate a graphene-integrated metasurface structure that enables electrically-tunable directional control of thermal emission. This device consists of a dielectric spacer that acts as a Fabry-Perot resonator supporting long-range delocalized modes bounded on one side by an electrostatically tunable metal-graphene metasurface. By varying the Fermi level of the graphene, the accumulated phase of the Fabry-Perot mode is shifted, which changes the direction of absorption and emission at a fixed frequency. We directly measure the frequency- and angle-dependent emissivity of the thermal emission from a fabricated device heated to 250 °C. Our results show that electrostatic control allows the thermal emission at 6.61 μm to be continuously steered over 16, with a peak emissivity maintained above 0.9. We analyze the dynamic behavior of the thermal emission steerer theoretically using a Fano interference model, and use the model to design optimized thermal steerer structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11032313PMC
http://dx.doi.org/10.1038/s41467-024-47229-0DOI Listing

Publication Analysis

Top Keywords

thermal emission
20
delocalized modes
8
thermal
6
emission
6
electrostatic steering
4
steering thermal
4
emission active
4
active metasurface
4
metasurface control
4
control delocalized
4

Similar Publications

Colloidal Germanium Quantum Dots with Broadly Tunable Size and Light Emission.

J Am Chem Soc

January 2025

McKetta Department of Chemical Engineering and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States.

Germanium (Ge) colloidal quantum dots (CQDs) were synthesized by thermal decomposition of GeI using capping ligand mixtures of oleylamine (OAm), octadecene (ODE), and trioctylphosphine (TOP). Average diameters could be tuned across a wide range, from 3 to 18 nm, by adjusting reactant concentrations, heating rates, and reaction temperatures. OAm promotes decomposition of GeI to Ge and serves as a weakly bound capping ligand.

View Article and Find Full Text PDF

As the investigation of high efficiency thermally activated delayed fluorescence (TADF) materials become more mature, regulating the emission properties for single organic luminescence molecules has gained increasing interest recently. Herein, the donor-acceptor compounds F-AQ comprised of fluorene and anthraquinone is reported, and it exhibits a polymorphism with muti-color emission and TADF from high-level intersystem crossing (hRISC). The photodynamics and excited-state transient species were studied by femtosecond transient absorption (fs-TA) spectroscopy.

View Article and Find Full Text PDF

Energy hubs, with their diverse regeneration and storage sources, can engage concurrently in energy transfer and storage. It is anticipated that managing the energy of these hubs within energy networks could enhance economic, environmental, and technical metrics. This article explains how electrical and thermal network hubs manage their energy consumption in the context of the multi-criteria objectives of efficiency, sustainability, reliability of the network operator, and operation.

View Article and Find Full Text PDF

A distinctive feature of both type 1 and type 2 diabetes is the waning of insulin-secreting beta cells in the pancreas. New methods for direct and specific targeting of the beta cells could provide platforms for delivery of pharmaceutical reagents. Imaging techniques such as Positron Emission Tomography (PET) rely on the efficient and specific delivery of imaging reagents, and could greatly improve our understanding of diabetes etiology as well as providing biomarkers for viable beta-cell mass in tissue, in both pancreas and in islet grafts.

View Article and Find Full Text PDF

Sulfur-locked multiple resonance emitters for high performance orange-red/deep-red OLEDs.

Nat Commun

January 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are preferred for their high efficiency and high colour purity in organic light-emitting diodes (OLEDs). However, the design strategies of MR-TADF emitters in the red region are very limited. Herein, we propose a concept for a paradigm shift in orange-red/deep-red MR emitters by linking the outer phenyl groups in a classical MR framework through intramolecular sulfur (S) locks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!