Relationship between sarcopenia and fatty liver in middle-aged and elderly patients with type 2 diabetes mellitus.

J Orthop Surg Res

State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, department of endocrinology, The first Affiliated Hospital of Xinjiang Medical University, No. 137 of Liyushannan Street, Xinshi District, Urumqi, 830054, China.

Published: April 2024

Objective: In this study, we investigated the relationship between sarcopenia and fatty liver in middle-aged and elderly patients diagnosed with type 2 diabetes mellitus (T2DM) to provide a theoretical foundation for the prevention and treatment of sarcopenia.

Methods: A total of 282 patients diagnosed with T2DM aged 50 and older and were admitted to the Endocrinology Department of Xin Medical University First Affiliated Hospital between December 2021 and February 2023, were selected. Body mass index (BMI), and limb and trunk muscle mass of the patients were measured, and data were collected. Patients were grouped based on the sarcopenia diagnostic criteria. All study participants underwent the same physical examinations and laboratory tests. The relationship between the onset of sarcopenia and fatty liver in middle-aged and elderly patients diagnosed with T2DM was then investigated using statistical analysis.

Results: Comparing the sarcopenia group to the non-sarcopenia group revealed statistically significant variations in gender, BMI, fatty liver prevalence rate, uric acid (UA), alanine aminotransferase (ALT), blood glucose, blood lipid associated indicators, and limb skeletal muscle content. There were, however, no statistically significant differences in age, disease duration, hypertension, smoking, or alcohol intake. There was a positive correlation between BMI, UA, fasting c-peptide, and Appendicular Skeletal Muscle Index (ASMI). Higher levels of BMI, ASMI, and UA were identified as protective variables against sarcopenia by multifactorial logistic regression analysis.

Conclusion: Higher levels of BMI, ASMI, and UA can greatly reduce skeletal muscle atrophy in patients with T2DM. Patients with a fatty liver may be less vulnerable to sarcopenia. There is little evidence, however, that a fatty liver works as a preventive factor against sarcopenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11031894PMC
http://dx.doi.org/10.1186/s13018-024-04717-9DOI Listing

Publication Analysis

Top Keywords

fatty liver
24
sarcopenia fatty
12
liver middle-aged
12
middle-aged elderly
12
elderly patients
12
patients diagnosed
12
skeletal muscle
12
relationship sarcopenia
8
patients
8
type diabetes
8

Similar Publications

An insight on the additive impact of type 2 diabetes mellitus and nonalcoholic fatty liver disease on cardiovascular consequences.

Mol Biol Rep

January 2025

Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India.

Background: Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) are associated with a multifactorial complicated aetiology that is often coexisting and has a strong and distinct connection with cardiovascular diseases (CVDs). In order to accomplish effective and appropriate therapeutic strategies, a deeper understanding of the bidirectional interaction between NAFLD patients, NAFLD patients with T2DM, and NAFLD patients with CVDs is required to control the concomitant rise in prevalence of these conditions worldwide. This article also aims to shed light on the epidemiology and mechanisms behind the relationship between T2DM, NAFLD and the related cardiovascular consequences.

View Article and Find Full Text PDF

Research on the function of epigenetic regulation in the inflammation of non-alcoholic fatty liver disease.

Life Med

August 2024

Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Changle West Road, Xincheng District, Xi'an, Shaanxi 710032, China.

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver condition, characterized by a spectrum that progresses from simple hepatic steatosis to nonalcoholic steatohepatitis, which may eventually lead to cirrhosis and hepatocellular carcinoma. The precise pathogenic mechanisms underlying NAFLD and its related metabolic disturbances remain elusive. Epigenetic modifications, which entail stable transcriptional changes without altering the DNA sequence, are increasingly recognized as pivotal.

View Article and Find Full Text PDF

Objectives: To explore the correlation between serum Golgi protein 73 (GP73) levels and the degree of fibrosis in Metabolic dysfunction associated steatotic liver disease (MASLD); to establish a non-invasive diagnostic algorithm based on serum GP73 and liver elasticity.

Methods: This is a prospective cross-sectional study, including 228 patients diagnosed with MASLD from May 2018 to January 2024 at two tertiary hospitals. Clinical data and hepatic pathological features and the correlation between serum GP73 and liver fibrosis were assessed.

View Article and Find Full Text PDF

Background/aim: Non-alcoholic fatty liver disease (NAFLD) is a global health concern with limited treatment options. The paucity of predictive   models in preclinical settings seems to be one of the limitations of identifying effective medicines. We therefore aimed to develop an   model that can display the key hallmarks of NAFLD, such as steatosis, inflammation, and fibrosis.

View Article and Find Full Text PDF

Fatty acid oxidation-induced HIF-1α activation facilitates hepatic urate synthesis through upregulating NT5C2 and XDH.

Life Metab

October 2024

CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai 200031, China.

Dyslipidemia affects approximately half of all people with gout, and prior Mendelian randomization analysis suggested a causal role for elevated triglycerides in hyperuricemia (HU), but the underlying mechanisms remain elusive. We hypothesize that dyslipidemia promotes hepatic urate biosynthesis in HU and gout and fatty acid (FA) oxidation (FAO) drives this process. Here we developed a targeted metabolomics to quantify major metabolites in purine metabolic pathway in the sera of a human cohort with HU, gout, and normaluricemic controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!