A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Eriocitrin prevents Sepsis-induced acute kidney injury through anti-inflammation and anti-oxidation via modulating Nrf2/DRP1/OPA1 signaling pathway. | LitMetric

Eriocitrin prevents Sepsis-induced acute kidney injury through anti-inflammation and anti-oxidation via modulating Nrf2/DRP1/OPA1 signaling pathway.

Biochim Biophys Acta Gen Subj

Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Provincial, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China. Electronic address:

Published: July 2024

Background: Severe inflammation and oxidative stress are characteristics of sepsis-associated kidney injury with high morbidity and mortality. Eriocitrin (ERI) has shown promise in suppressing sepsis-associated kidney injury and LPS-induced periodontal disease, however, its efficacy in alleviating SAKI remains unexplored. This study aimed to investigate the therapeutic potential of ERI on SAKI through in vivo and in vitro experiments, elucidating its underlying mechanism.

Methods: The therapeutic effects of ERI against SAKI were evaluated by survival rate, changes of serum creatinine (Scr) and blood urea nitrogen (BUN) and statistic of renal histological score in a Cecal ligation and puncture (CLP)-induced septic mice. Impactions about anti-coagulation, anti-inflammation, anti-oxidative stress and improvement of mitochondrial damage and mitochondrial morphology were further assayed. In vitro, HUVECs upon stimulation of LPS with or without different dosage of ERI, followed by evaluating changes in inflammation, mitochondrial dynamic equilibrium and signaling pathways.

Results: ERI demonstrated ameliorative effects on SAKI by attenuating inflammation, oxidative stress and coagulation evidenced by the improved survival rate, alleviated kidney histological injury, declined BUN and Scr in serum and diminished levels of inflammation cytokines, and coagulation factors. Mechanistically, ERI suppressed DRP1-regulated mitochondrial fission and promoted OPA1-modulated mitochondrial fusion by activating Nrf2 in septic mice and LPS-stimulated HUVECs, which maintained mitochondrial dynamic equilibrium, improved mitochondrial morphology, assured integrity of mitochondrial function, decreased oxidative stress, impeded overwhelming inflammation, and thus, played a pivotal role in ERI's protection against SAKI.

Conclusion: Our data confirmed the therapeutic potential of ERI in mitigating SAKI,suggesting its viability as a pharmacological agent in clinic settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2024.130628DOI Listing

Publication Analysis

Top Keywords

kidney injury
12
oxidative stress
12
inflammation oxidative
8
sepsis-associated kidney
8
therapeutic potential
8
potential eri
8
eri saki
8
survival rate
8
septic mice
8
mitochondrial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!