Unraveling the influence of channel size and shape in 3D printed ceramic scaffolds on osteogenesis.

Acta Biomater

Tissue Engineering and Biomaterials Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia. Electronic address:

Published: May 2024

AI Article Synopsis

  • Bone can regenerate itself for minor defects, but this ability is reduced in large defects, leading to increased interest in synthetic materials like bioceramic implants.
  • The effectiveness of bioceramics in clinics relies on both their material properties and internal porous structures, prompting a study on how different channel sizes and shapes affect bone regeneration in rabbits.
  • Results indicated that a circular channel size of about 0.9 mm significantly improved bone formation, while the shape didn't affect new bone volume, and concave surfaces enhanced tissue growth, highlighting the importance of scaffold design for better bone healing.

Article Abstract

Bone has the capacity to regenerate itself for relatively small defects; however, this regenerative capacity is diminished in critical-size bone defects. The development of synthetic materials has risen as a distinct strategy to address this challenge. Effective synthetic materials to have emerged in recent years are bioceramic implants, which are biocompatible and highly bioactive. Yet nothing suitable for the repair of large bone defects has made the transition from laboratory to clinic. The clinical success of bioceramics has been shown to depend not only on the scaffold's intrinsic material properties but also on its internal porous geometry. This study aimed to systematically explore the implications of varying channel size, shape, and curvature in tissue scaffolds on in vivo bone regeneration outcomes. 3D printed bioceramic scaffolds with varying channel sizes (0.3 mm to 1.5 mm), shapes (circular vs rectangular), and curvatures (concave vs convex) were implanted in rabbit femoral defects for 8 weeks, followed by histological evaluation. We demonstrated that circular channel sizes of around 0.9 mm diameter significantly enhanced bone formation, compared to channel with diameters of 0.3 mm and 1.5 mm. Interestingly, varying channel shapes (rectangular vs circular) had no significant effect on the volume of newly formed bone. Furthermore, the present study systematically demonstrated the beneficial effect of concave surfaces on bone tissue growth in vivo, reinforcing previous in silico and in vitro findings. This study demonstrates that optimizing architectural configurations within ceramic scaffolds is crucial in enhancing bone regeneration outcomes. STATEMENT OF SIGNIFICANCE: Despite the explosion of work on developing synthetic scaffolds to repair bone defects, the amount of new bone formed by scaffolds in vivo remains suboptimal. Recent studies have illuminated the pivotal role of scaffolds' internal architecture in osteogenesis. However, these investigations have mostly remained confined to in silico and in vitro experiments. Among the in vivo studies conducted, there has been a lack of systematic analysis of individual architectural features. Herein, we utilized bioceramic 3D printing to conduct a systematic exploration of the effects of channel size, shape, and curvature on bone formation in vivo. Our results demonstrate the significant influence of channel size and curvature on in vivo outcomes. These findings provide invaluable insights into the design of more effective bone scaffolds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2024.04.020DOI Listing

Publication Analysis

Top Keywords

channel size
16
size shape
12
bone
12
bone defects
12
varying channel
12
channel
8
influence channel
8
ceramic scaffolds
8
synthetic materials
8
shape curvature
8

Similar Publications

Voltage-dependent anion channel (VDAC) is the primary conduit for regulated passage of ions and metabolites into and out of a mitochondrion. Calculating the solvation free energy for VDAC is crucial for understanding its stability, function, and interactions within the cellular environment. In this article, numerical schemes for computing the total solvation free energy for VDAC-comprising electrostatic, ideal gas, and excess free energies plus the nonpolar energy-are developed based on a nonuniform size modified Poisson-Boltzmann ion channel (nuSMPBIC) finite element solver along with tetrahedral meshes for VDAC proteins.

View Article and Find Full Text PDF

Methylcellulose enhances resolution in gravitational field-flow fractionation: Going beyond viscosity.

J Chromatogr A

December 2024

Department "Area Materno-Infantile" Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan Italy.

Gravitational Field-Flow Fractionation (GrFFF) is an elution-based method designed for the separation of particles ranging from a few micrometers up to approximately 100 μm in diameter. Separation occurs over time, with particles being fractionated based on size and other physico-chemical properties. GrFFF takes advantage of gravitational forces acting perpendicularly to a laminar flow in a thin channel.

View Article and Find Full Text PDF

Cryo-EM structure of the human Pannexin-3 channel.

Biochem Biophys Res Commun

December 2024

Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan. Electronic address:

Pannexin-3 (PANX3) is a member of the pannexin family of large-pore, ATP-permeable channels conserved across vertebrates. PANX3 contributes to various developmental and pathophysiological processes by permeating ATP and Ca ions; however, the structural basis of PANX3 channel function remains unclear. Here, we present the cryo-EM structure of human PANX3 at 2.

View Article and Find Full Text PDF

Voltage-sensitive calcium channels contribute to depolarization of both motor- and interneurons in animal studies, but less is known of their contribution to human motor control and whether blocking them has potential in future antispasmodic treatment in humans. Therefore, this study investigated the acute effect of Nimodipine on the transmission of human spinal reflex pathways involved in spasticity. In a double-blinded, cross-over study, we measured soleus muscle stretch- and H-reflexes, and tibialis anterior cutaneous reflexes in nineteen healthy subjects before and after Nimodipine (tab-let 60mg) or Baclofen (tablet 25mg).

View Article and Find Full Text PDF

A mixed-ligand-based thermo-chemically robust and undulated metal-organic framework (MOF) is developed that embraces carboxamide moiety-grafted porous channels and activation-induced generation of open-metal site (OMS). The guest-free MOF acts as an outstanding heterogeneous catalyst in Hantzsch condensation for electronically assorted substrates with low catalyst loading and short duration under greener conditions than the reported materials. Besides Lewis acidic OMS, the carboxamide group activates the substrate via two-point hydrogen bonding, highlighting the effectiveness of custom-made functionalities in this multi-component reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!