A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of nanoformulation Azadirachta indica on some factors associated with the vectorial capacity and competence of Anopheles aquasalis experimentally infected with Plasmodium vivax. | LitMetric

AI Article Synopsis

  • Malaria, a widespread infectious disease, is primarily spread by mosquitoes, making mosquito control essential to combat it, especially in tropical areas.
  • This study explored a nanoformulation of the Neem tree (Azadirachta indica) and its effects on the Anopheles aquasalis mosquito, a malaria vector in Latin America, focusing on mosquito lifespan, reproductive traits, and transgenerational impacts.
  • Results showed that higher concentrations of the Neem nanoformulation significantly reduced mosquito survival, fertility, and the infection rate of Plasmodium vivax, indicating that this plant-based approach could be a viable strategy for malaria management.

Article Abstract

Malaria remains a highly prevalent infectious disease worldwide, particularly in tropical and subtropical regions. Effectively controlling of mosquitoes transmitting of Plasmodium spp. is crucial in to control this disease. A promising strategy involves utilizing plant-derived products, such as the Neem tree (Azadirachta indica), known for its secondary metabolites with biological activity against various insect groups of agricultural and public health importance. This study investigated the effects of a nanoformulation prototype Neem on factors linked to the vector competence of Anopheles aquasalis, a malaria vector in Latin America. Different concentrations of the nanoformulation were supplied through sugar solution and blood feeding, assessing impacts on longevity, fecundity, fertility, and transgenerational survival from larvae to adults. Additionally, the effects of the Neem nanoformulation and NeemAZAL® formulation on the sporogonic cycle of P. vivax were evaluated. Overall, significant impacts were observed at 100 ppm and 1,000 ppm concentrations on adult survival patterns and on survival of the F1 generation. A trend of reduced oviposition and hatching rates was also noted in nanoformulation-consuming groups, with fertility and fecundity declining proportionally to the concentration. Additionally, a significant decrease in the infection rate and intensity of P. vivax was observed in the 1,000 ppm group, with a mean of 3 oocysts per female compared to the control's 27 oocysts per female. In the commercial formulation, the highest tested concentration of 3 ppm yielded 5.36 oocysts per female. Concerning sporozoite numbers, there was a reduction of 52 % and 87 % at the highest concentrations compared to the control group. In conclusion, these findings suggest that the A. indica nanoformulation is a potential as a tool for malaria control through reduction in the vector longevity and reproductive capacity, possibly leading to decreased vector population densities. Moreover, the nanoformulation interfered with the sporogonic development of P. vivax. However, further basic research on Neem formulations, their effects, and mechanisms of action is imperative to gain a more specific perspective for safe field implementation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actatropica.2024.107223DOI Listing

Publication Analysis

Top Keywords

oocysts female
12
azadirachta indica
8
competence anopheles
8
anopheles aquasalis
8
1000 ppm
8
nanoformulation
6
nanoformulation azadirachta
4
indica factors
4
factors associated
4
associated vectorial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!