A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effectiveness of a virtual fencing technology to allocate pasture and herd cows to the milking shed. | LitMetric

The effectiveness of a virtual fencing technology to allocate pasture and herd cows to the milking shed.

J Dairy Sci

Tasmanian Institute of Agriculture, College of Sciences and Engineering, University of Tasmania, Burnie TAS 7320, Australia.

Published: August 2024

Virtual fencing technology provides an opportunity to rethink the management of intensive grazing systems in general, yet most studies have used products developed and applied to more extensive livestock systems. This research aimed to assess the application of a virtual fencing technology developed for the intensive pastoral dairy industry. The Halter system uses 2 primary cues (sound and vibration) and one aversive secondary cue (a low-energy electrical pulse) to confine cows to a pasture allocation and remotely herd cows. We studied 2 groups of 40 mid-lactation multiparous dairy cows (Bos taurus, predominantly Friesian and Friesian × Jersey, parity 1-8). Cows were milked twice per day and provided 9 kg of pasture DM/d in a 24-h allocation, supplemented with 7 kg of silage and 6 kg of grain DM/d. Training to the Halter system occurred over 10 d, after which cows were managed with the technology for a further 28 d. The type and time of cues delivered were recorded by each collar and communicated via a base station to cloud data storage. Cows took less than a day to start responding to the sound cues delivered while held on a pasture allocation and were moving to the milking parlor without human intervention by d 4 of training. On training d 1, at least 60% of sound cues resulted in an electrical pulse. Across training d 2 to 10, 6.4% of sound cues resulted in a pulse. After the 10-d training period, 2.6% of sound cues resulted in a pulse. During the management period, 90% of cows spent ≤1.7 min/d beyond the virtual fence, received ≤0.71 pulses/d in the paddock and received ≤1 pulse/d during virtual herding to the parlor. By the final week of the management period, 50% of cows received 0 pulses/week in the paddock and 35% received 0 pulses/week during virtual herding. The number of pulses delivered per day and the pulse/sound cue ratio was lower in this study than that previously reported using other virtual fencing technologies. We conclude that the Halter technology is successful at containing lactating dairy cows in an intensive grazing system as well as at remotely herding animals to the milking parlor.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2023-24537DOI Listing

Publication Analysis

Top Keywords

virtual fencing
16
sound cues
16
fencing technology
12
cows
10
herd cows
8
intensive grazing
8
halter system
8
electrical pulse
8
pasture allocation
8
dairy cows
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!