Residence time distribution (RTD) method has been widely used in the pharmaceutical manufacturing for understanding powder dynamics within unit operations and continuous integrated manufacturing lines. The dynamics thus captured is then used to develop predictive models for unit operations and important RTD-based applications ensuring product quality assurance. Despite thorough efforts in tracer selection, data acquisition, and calibration model development to obtain tracer concentration profiles for RTD studies, there can exist significant noise in these profiles. This noise can make it challenging to identify the underlying signal and get a representative RTD of the system under study. Such concerns have previously indicated the importance of noise handling for RTD measurements in literature. However, the literature does not provide sufficient information on noise handling or data treatment strategies for RTD studies. To this end, we investigate the impact of varying levels of noise using different tracers on measurement of RTD profile and its applications. We quantify the impact of different denoising methods (time and frequency averaging methods). Through this investigation, we see that Savitsky Golay filtering turns out to a good method for denoising RTD profiles despite varying noise levels. The investigation is performed such that the key features of the RTD profile (which are important for RTD based applications) are preserved. Subsequently, we also investigate the impact of denoising on RTD-based applications such as out-of-specification (OOS) analysis and RTD modeling. The results show that the degree of noise levels considered in this work do not significantly impact the RTD-based applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2024.124133DOI Listing

Publication Analysis

Top Keywords

rtd-based applications
12
rtd
10
data treatment
8
residence time
8
time distribution
8
pharmaceutical manufacturing
8
unit operations
8
rtd studies
8
noise handling
8
investigate impact
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!