Resource patchiness caused by external events breaks the continuity and homogeneity of resource distribution in the original ecosystem. For local organisms, this leads to drastic changes in the availability of resources, breaks down the co-existence of species, and reshuffles the local ecosystem. West Lake is a freshwater lake with resource patchiness caused by multiple exogenous disturbances that has strong environmental heterogeneity that prevents clear observation of seasonal changes in the microbial communities. Despite this, the emergence of rhythmic species in response to irregular changes in the environment has been helpful for observing microbial communities dynamics in patchy ecosystems. We investigated the ecological mechanisms of seasonal changes in microbial communities in West Lake by screening rhythmic species based on the ecological niche and modern coexistence theories. The results showed that rhythmic species were the dominant factors in microbial community changes and the effects of most environmental factors on the microbial community were indirectly realised through the rhythmic species. Random forest analyses showed that seasonal changes in the microbial community were similarly predicted by the rhythmic species. In addition, we incorporated species interactions and community phylogenetic patterns into stepwise multiple regression analyses, the results of which indicate that ecological niches and species fitness may drive the coexistence of these subcommunities. Thus, this study extends our understanding of seasonal changes in microbial communities and provides new ways for observing seasonal changes in microbial communities, especially in ecosystems with resource patches. Our study also show that combining community phylogenies with co-occurrence networks based on ecological niches and modern coexistence theory can further help us understand the ecological mechanisms of interspecies coexistence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.121626 | DOI Listing |
J Environ Manage
January 2025
School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou City, 450001, Henan Province, China. Electronic address:
Enhancing the understanding of the rainfall-runoff temporal dynamics in semi-arid and semi-humid regions is crucial for flood disaster mitigation. Loess Plateau is a unique environment within semi-arid and semi-humid regions, characterized by its deep loess soil, prevalent short-duration intense rainfall, and changes in underlying surface conditions. In this research, 25 catchments from the Loess Plateau were chosen to examine the temporal variations in event runoff responses across different time scales.
View Article and Find Full Text PDFSci Total Environ
January 2025
Universidad de Santiago de Chile, Santiago, Chile.
Assessing future snow cover changes is challenging because the high spatial resolution required is typically unavailable from climate models. This study, therefore, proposes an alternative approach to estimating snow changes by developing a super-spatial-resolution downscaling model of snow depth (SD) for Japan using a convolutional neural network (CNN)-based method, and by downscaling an ensemble of models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) dataset. After assessing the coherence of the observed reference SD dataset with independent observations, we leveraged it to train the CNN downscaling model; following its evaluation, we applied the trained model to CMIP6 climate simulations.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Institute of Ecology and Geography, Siberian Federal University, 79 Svobodny Pr., Krasnoyarsk 660041, Russia.
Tree-ring width chronologies of Du Tour from near the upper treeline in the Western Sayan, Southern Siberia are found to have an exceptional (below mean-3SD) multi-year drop near 1700 CE, highlighted by the seven narrowest-ring years in a 1524-2022 regional chronology occurring in the short span of one decade. Tree rings are sometimes applied to reconstruct seasonal air temperatures; therefore, it is important to identify other factors that may have contributed to the growth suppression. The spatiotemporal scope of the "nosedive" in tree growth is investigated with a large network of (14 sites) and Ledeb.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department Biosciences and Territory, University of Molise, 86090 Pesche, Italy.
In the Mediterranean basin, urban forests are widely recognized as essential landscape components, playing a key role in nature-based solutions by enhancing environmental quality and providing a range of ecosystem services. The selection of woody plant species for afforestation and reforestation should prioritize native species that align with the biogeographical and ecological characteristics of the planting sites. Among these, L.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea.
Morphophysiological dormancy (MPD) is considered one of the most primitive dormancy classes among seed plants. While extensive studies have examined the occurrence of endo-β-mannanase in seeds with physiological dormancy (PD) or non-dormancy, little is known about the activity of this enzyme in seeds with MPD. This study aimed to investigate the temporal and spatial patterns of endo-β-mannanase activity during dormancy break and germination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!