A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

From quantitative metrics to clinical success: assessing the utility of deep learning for tumor segmentation in breast surgery. | LitMetric

AI Article Synopsis

  • The study aims to improve outcomes in breast-conserving surgery (BCS) by using deep learning to automatically contour tumors and assist surgeons in real-time.
  • Sixteen different deep learning models were trained on 7,318 ultrasound images from 33 patients, and their performance was evaluated against expert rankings and recorded surgical data.
  • Although the top model showed excellent quantitative results, its ability to accurately predict pathology outcomes was limited, revealing challenges in translating automatic contouring into clinical practice.

Article Abstract

Purpose: Preventing positive margins is essential for ensuring favorable patient outcomes following breast-conserving surgery (BCS). Deep learning has the potential to enable this by automatically contouring the tumor and guiding resection in real time. However, evaluation of such models with respect to pathology outcomes is necessary for their successful translation into clinical practice.

Methods: Sixteen deep learning models based on established architectures in the literature are trained on 7318 ultrasound images from 33 patients. Models are ranked by an expert based on their contours generated from images in our test set. Generated contours from each model are also analyzed using recorded cautery trajectories of five navigated BCS cases to predict margin status. Predicted margins are compared with pathology reports.

Results: The best-performing model using both quantitative evaluation and our visual ranking framework achieved a mean Dice score of 0.959. Quantitative metrics are positively associated with expert visual rankings. However, the predictive value of generated contours was limited with a sensitivity of 0.750 and a specificity of 0.433 when tested against pathology reports.

Conclusion: We present a clinical evaluation of deep learning models trained for intraoperative tumor segmentation in breast-conserving surgery. We demonstrate that automatic contouring is limited in predicting pathology margins despite achieving high performance on quantitative metrics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11548-024-03133-yDOI Listing

Publication Analysis

Top Keywords

deep learning
16
quantitative metrics
12
tumor segmentation
8
breast-conserving surgery
8
learning models
8
generated contours
8
quantitative
4
metrics clinical
4
clinical success
4
success assessing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: