Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Specular reflections in endoscopic images not only disturb visual perception but also hamper computer vision algorithm performance. However, the intricate nature and variability of these reflections, coupled with a lack of relevant datasets, pose ongoing challenges for removal.
Methods: We present EndoSRR, a robust method for eliminating specular reflections in endoscopic images. EndoSRR comprises two stages: reflection detection and reflection region inpainting. In the reflection detection stage, we adapt and fine-tune the segment anything model (SAM) using a weakly labeled dataset, achieving an accurate reflection mask. For reflective region inpainting, we employ LaMa, a fast Fourier convolution-based model trained on a 4.5M-image dataset, enabling effective inpainting of arbitrarily shaped reflection regions. Lastly, we introduce an iterative optimization strategy for dual pre-trained models to refine the results of specular reflection removal, named DPMIO.
Results: Utilizing the SCARED-2019 dataset, our approach surpasses state-of-the-art methods in both qualitative and quantitative evaluations. Qualitatively, our method excels in accurately detecting reflective regions, yielding more natural and realistic inpainting results. Quantitatively, our method demonstrates superior performance in both segmentation evaluation metrics (IoU, E-measure, etc.) and image inpainting evaluation metrics (PSNR, SSIM, etc.).
Conclusion: The experimental results underscore the significance of proficient endoscopic specular reflection removal for enhancing visual perception and downstream tasks. The methodology and results presented in this study are poised to catalyze advancements in specular reflection removal, thereby augmenting the accuracy and safety of minimally invasive surgery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11548-024-03137-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!