Gas sensors play a crucial role in various industries and applications. In recent years, there has been an increasing demand for gas sensors in society. However, the current method for screening gas-sensitive materials is time-, energy-, and cost-consuming. Consequently, an imperative exists to enhance the screening efficiency. In this study, we proposed a collaborative screening strategy through integration of density functional theory and machine learning. Taking zinc oxide (ZnO) as an example, the responsiveness of ZnO to the target gas was determined quickly on the basis of the changes in the electronic state and structure before and after gas adsorption. In this work, the adsorption energy and electronic and structural characteristics of ZnO after adsorbing 24 kinds of gases were calculated. These computed features served as the basis for training a machine learning model. Subsequently, various machine learning and evaluation algorithms were utilized to train the fast screening model. The importance of feature values was evaluated by the AdaBoost, Random Forest, and Extra Trees models. Specifically, charge transfer was assigned importance values of 0.160, 0.127, and 0.122, respectively, ranking as the highest among the 11 features. Following closely was the d-band center, which was presumed to exert influence on electrical conductivity and, consequently, adsorption properties. With 5-fold cross-validation using the Extra Tree accuracy, the 24-sample data set achieved an accuracy of 88%. The 72-sample data set achieved an accuracy of 78% using multilayer perceptron after 5-fold cross-validation, with both data sets exhibiting low standard deviations. This verified the accuracy and reliability of the strategy, showcasing its potential for rapidly screening a material's responsiveness to the target gas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.4c00186 | DOI Listing |
Curr Med Imaging
January 2025
Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
Objective: The aim of this study was to develop and validate predictive models for perineural invasion (PNI) in gastric cancer (GC) using clinical factors and radiomics features derived from contrast-enhanced computed tomography (CE-CT) scans and to compare the performance of these models.
Methods: This study included 205 GC patients, who were randomly divided into a training set (n=143) and a validation set (n=62) in a 7:3 ratio. Optimal radiomics features were selected using the least absolute shrinkage and selection operator (LASSO) algorithm.
Ann Surg
January 2025
Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
Objective: To assess performance of an algorithm for automated grading of surgery-related adverse events (AEs) according to Clavien-Dindo (C-D) classification.
Summary Background Data: Surgery-related AEs are common, lead to increased morbidity for patients, and raise healthcare costs. Resource-intensive manual chart review is still standard and to our knowledge algorithms using electronic health record (EHR) data to grade AEs according to C-D classification have not been explored.
Cancer Med
January 2025
Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China.
Background: Distinctive heterogeneity characterizes diffuse large B-cell lymphoma (DLBCL), one of the most frequent types of non-Hodgkin's lymphoma. Mitochondria have been demonstrated to be closely involved in tumorigenesis and progression, particularly in DLBCL.
Objective: The purposes of this study were to identify the prognostic mitochondria-related genes (MRGs) in DLBCL, and to develop a risk model based on MRGs and machine learning algorithms.
Introduction: This study aimed to identify cognitive tests that optimally relate to tau positron emission tomography (PET) signal in the inferior temporal cortex (ITC), a neocortical region associated with early tau accumulation in Alzheimer's disease (AD).
Methods: We analyzed cross-sectional data from the harvard aging brain study (HABS) (= 128) and the Anti-Amyloid Treatment in Asymptomatic Alzheimer's (A4) study (= 393). We used elastic net regression to identify the most robust cognitive correlates of tau PET signal in the ITC.
Beilstein J Org Chem
January 2025
Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore.
The discovery of the optimal conditions for chemical reactions is a labor-intensive, time-consuming task that requires exploring a high-dimensional parametric space. Historically, the optimization of chemical reactions has been performed by manual experimentation guided by human intuition and through the design of experiments where reaction variables are modified one at a time to find the optimal conditions for a specific reaction outcome. Recently, a paradigm change in chemical reaction optimization has been enabled by advances in lab automation and the introduction of machine learning algorithms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!