Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Xylem conduits have lignified walls to resist crushing pressures. The thicker the double-wall (T) relative to its diameter (D), the greater the implosion safety. Having safer conduits may incur higher costs and reduced flow, while having less resistant xylem may lead to catastrophic collapse under drought. Although recent studies have shown that conduit implosion commonly occurs in leaves, little is known about how leaf xylem scales T vs D to trade off safety, flow efficiency, mechanical support, and cost. We measured T and D in > 7000 conduits of 122 species to investigate how T vs D scaling varies across clades, habitats, growth forms, leaf, and vein sizes. As conduits become wider, their double-cell walls become proportionally thinner, resulting in a negative allometry between T and D. That is, narrower conduits, which are usually subjected to more negative pressures, are proportionally safer than wider ones. Higher implosion safety (i.e. higher T/D ratios) was found in asterids, arid habitats, shrubs, small leaves, and minor veins. Despite the strong allometry, implosion safety does not clearly trade off with other measured leaf functions, suggesting that implosion safety at whole-leaf level cannot be easily predicted solely by individual conduits' anatomy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.19771 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!