Atmospheric pollutants in the air form acid rain which interacts with bronze surfaces exposed in urban outdoor environment. In this study, different types of patinas on bronze were investigated during and after 9 years of exposure to urban environment in moderately polluted continental city. Natural bronze patina and artificial brown sulphide, green chloride, and green-blue nitrate patinas were investigated. Visual assessment was carried out at defined periods. After 9 years of exposure, an electrochemical study was performed to investigate the electrochemical activity of the patinas in artificial urban rain. Additionally, the patinas were characterised using a variety of techniques, including metallographic examination, scanning electron microscopy/energy dispersive X-ray spectroscopy, Raman spectroscopy, X-ray diffraction analysis, X-ray-photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry to analyse the surface morphology, chemical composition, and stratigraphic features of the patinas. Evolution of the patinas was shown to be a result of both, the composition of the acid rain and the hydrophobicity of the patinated surfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11133102 | PMC |
http://dx.doi.org/10.1007/s11356-024-33369-9 | DOI Listing |
Nat Commun
January 2025
The Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China.
Precipitation is an important factor influencing the date of foliar senescence, which in turn affects carbon uptake of terrestrial ecosystems. However, the temporal patterns of precipitation frequency and its impact on foliar senescence date remain largely unknown. Using both long-term carbon flux data and satellite observations across the Northern Hemisphere, we show that, after excluding impacts from of temperature, radiation and total precipitation by partial correlation analysis, declining precipitation frequency may drive earlier foliar senescence date from 1982 to 2022.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Science and Engineering of Materials, Environment and Urban Planning - SIMAU, Polytechnic University of Marche, via Brecce Bianche 12, 60131 Ancona, Italy.
The reuse of stormwater represents a potential option for meeting water demands in water stressed regions as well as preventing and mitigating diffuse pollution of receiving water bodies. Particularly, the elaboration of a risk management plan for stormwater reuse may help to understand associated environmental and public health risks and design fit-for-purpose water treatment processes. In this work, it is presented an innovative methodology to perform quantitative microbial risk assessment (QMRA) for stormwater reuse by using data simulated by SWMM software.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Politecnico di Milano, Department of Civil and Environmental Engineering, Italy. Electronic address:
Stormwater runoff control is often a concern due to urbanization and extreme rainfall events. Sustainable urban drainage systems can support traditional hydraulic networks in rainwater management by providing local runoff disposal and reuse of collected stormwater. The objective of the study is based on an innovative analytical-probabilistic approach for evaluating the functioning of rainwater tanks in stormwater management with the potential for using collected water for non-potable purposes.
View Article and Find Full Text PDFNat Med
January 2025
Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
Flooding greatly endangers public health and is an urgent concern as rapid population growth in flood-prone regions and more extreme weather events will increase the number of people at risk. However, an exhaustive analysis of mortality following floods has not been conducted. Here we used 35.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Geography, Central University of Tamil Nadu, School of Earth Sciences, Thiruvarur, Tamil Nadu, India.
Land use and land cover (LULC) changes are crucial in influencing regional climate patterns and environmental dynamics. However, the long-term impacts of these changes on climate variability in the Bilate River Basin remain poorly understood. This study examines the spatiotemporal changes in LULC and their influence on climate variability in the Bilate River Basin, Ethiopia, over the period from 1994 to 2024.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!