Dye in industrial wastewater is one of the most serious environmental concerns due to its potentially harmful effects on human health. Many industrial dyes are carcinogenic, toxic and teratogenic. Removal and recovery of hazardous dyes from the effluents requires efficient adsorbents. In this study, magnetic adsorbent MnFeO-NH-HKUST-1 was synthesized to remove methylene blue and crystal violet dyes from aqueous solutions. The synthesized adsorbent was characterized using FTIR, XRD, BET, VSM, SEM, TGA and Zeta potential techniques. The effect of different parameters such as pH, contact time, and adsorbent dosage on the removal of dyes was investigated. The dye adsorption process was investigated by UV-Vis spectrophotometry. The maximum adsorbent capacity was obtained as 149.25 mg/g for methylene blue and 135.13 mg/g for crystal violet. The adsorption equilibrium isotherm and kinetic models were plotted and results showed that the adsorption process for both dyes is a collection of physical and chemical adsorption based on langmuir and freundlich isotherm models, and follows the pseudo-second-order adsorption kinetics. This study shows that magnetic adsorbent MnFeO-NH-HKUST-1 has a good potential for removal of methylene blue and crystal violet dyes from water in a short time (5 min) and it is easily separated from the solution by a magnetic field due to its magnetic property.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11031582 | PMC |
http://dx.doi.org/10.1038/s41598-024-59727-8 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
A sustainable biosorbent, silver nanoparticles-decorated coffee-ground waste (CWAg), was synthesized through a simple in-situ reduction method. CWAg is extensively characterized via SEM-EDX, PZC, FTIR, XRD, HR-TEM, and XPS analyses. The biosorbent was tested to remove chromium (Cr(VI)) and methylene blue (MB) from wastewater, and its antibacterial properties was evaluated.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran.
This study investigates the biosynthesis of iron oxide nanoparticles (FeONPs) using the cell-free supernatant of Pseudomonas fluorescens. The synthesized FeONPs were characterized through UV-VIS, XRD, FTIR, FESEM, EDX, TEM, BET, and VSM analyses. The XRD results confirmed that FeONPs were successfully synthesized and EDX analysis indicated that iron accounted for 89.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany.
Hybrid hydrogels are promising for wound dressing, tissue engineering, and drug delivery due to their exceptional biocompatibility and mechanical stability. This study synthesized hybrid hydrogels for photodynamic therapy using electron beam-initiated polymerization with varying PEGDA/gelatin ratios and irradiation doses to evaluate their effectiveness as uptake and release systems for five photosensitizers. Toluidine blue, O (TBO); methylene blue (MB); eosin, Y; indocyanine, green; and sodium meso-tetraphenylporphine-4,4',4″,4‴-tetrasulfonate were studied for their uptake and release dynamics in relation to their structural properties and the hydrogels' composition.
View Article and Find Full Text PDFHeliyon
December 2024
College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, China.
Nanoparticles have been extensively studied for many years due to their important roles in catalysis, metallurgy and high temperature superconductors. But, Nanoparticles are extremely unstable and easily react with other substances. So, to control the size and the shape of nanoparticles they must be stabilized.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Physics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km 21 Jatinangor, Sumedang 45363, Indonesia.
Efforts to prevent fouling are crucial in advancing ultrafiltration (UF) membranes, especially in addressing the concentration polarization of the accumulation of dissolved dye molecules in wastewater. This study explores the impact of incorporating graphene oxide (GO) onto eggshell (ES) UF membranes regarding their permeability, rejection efficiency, and permeate flow rate. The ES-GO membranes were obtained from eggshells that were modified with varied concentrations of GO (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!