A Multifunctional Dye Molecule as the Interfacial Layer for Perovskite Solar Cells.

ACS Appl Mater Interfaces

Beijing Key Laboratory of Novel Thin-Film Solar Cells, School of New Energy, North China Electric Power University, Beijing 102206, China.

Published: May 2024

In perovskite solar cells (PSCs), defects in the interface and mismatched energy levels can damage the device performance. Improving the interface quality is an effective way to achieve efficient and stable PSCs. In this work, a multifunctional dye molecule, named ThPCyAc, was designed and synthesized to be introduced in the perovskite/HTM interface. On one hand, various functional groups on the acceptor unit can act as Lewis base to reduce defect density and suppress nonradiative combinations. On the other hand, the stepwise energy-level alignment caused by ThPCyAc decreases the accumulation of interface carriers for facilitating charge extraction and transmission. Therefore, based on the ThPCyAc molecule, the devices exhibit elevated open-circuit voltage and fill factor, resulting in the best power conversion efficiency (PCE) of 23.16%, outperforming the control sample lacking the interface layer (PCE = 21.49%). Excitingly, when attempting to apply it as a self-assembled layer in inverted devices, ThPCyAc still exhibits attractive behavior. It is worth noting that these results indicate that dye molecules have great potential in developing multifunctional interface materials to obtain higher-performance PSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c03383DOI Listing

Publication Analysis

Top Keywords

multifunctional dye
8
dye molecule
8
perovskite solar
8
solar cells
8
interface
6
molecule interfacial
4
interfacial layer
4
layer perovskite
4
cells perovskite
4
cells pscs
4

Similar Publications

With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment.

View Article and Find Full Text PDF

This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications.

View Article and Find Full Text PDF

Bio-green synthesis of bismuth oxide nanoparticles using almond gum for enhanced photocatalytic degradation of water pollutants and biocompatibility.

Int J Biol Macromol

January 2025

Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research, King Saud University, Riyadh 11421, Saudi Arabia. Electronic address:

The discharge of dye-contaminated industrial wastewater is a significant source of water and soil pollution. The eco-friendly synthesis of multifunctional bismuth oxide nanoparticles (BiO-NPs) offers a promising approach for the removal of toxic contaminants. The incorporation of natural polymers in nanoparticle production has gained significant scientific attention due to their environmentally friendly and efficient properties.

View Article and Find Full Text PDF

Nanosheet-shaped WS/ICG nanocomposite for photodynamic/photothermal synergistic bacterial clearance and cutaneous regeneration on infectious wounds.

Biomater Adv

January 2025

Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou 571199, China. Electronic address:

Bacterial infections present a significant threat to human health, a challenge that is intensified by the slow pace of novel antibiotic development and the swift emergence of bacterial resistance. The development of novel antibacterial agents is crucial. Indocyanine green (ICG), a widely used imaging dye, efficiently generates reactive oxygen species (ROS) and heat for treating bacterial infections but suffers from aggregation and instability, limiting its efficacy.

View Article and Find Full Text PDF

A near-infrared amine/HSO probe with colorimetric and fluorescent ultrafast response and its application in food samples and visual evaluation of salmon freshness.

Food Res Int

February 2025

College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou 121013, China.

A multifunctional near-infrared fluorescent probe (Sycy) is synthesized by the one-step condensation reaction of syringaldehyde and tricyanofuran. Sycy can detect HSO within 150 s in the red wine and sugar samples with a low detection limit of 3.5 μM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!