A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Celecoxib and sulindac sulfide elicit anticancer effects on PIK3CA-mutated head and neck cancer cells through endoplasmic reticulum stress, reactive oxygen species, and mitochondrial dysfunction. | LitMetric

Celecoxib and sulindac sulfide elicit anticancer effects on PIK3CA-mutated head and neck cancer cells through endoplasmic reticulum stress, reactive oxygen species, and mitochondrial dysfunction.

Biochem Pharmacol

Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi, Republic of Korea; Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi, Republic of Korea. Electronic address:

Published: June 2024

Gain-of-function mutation in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) catalytic subunit alpha gene (PIK3CA) is a significant factor in head and neck cancer (HNC). Patients with HNC harboring PIK3CA mutations receive therapeutic benefits from the use of non-steroidal anti-inflammatory drugs (NSAIDs). However, the molecular mechanisms underlying these effects remain unknown. Here, we examined the Detroit562 and FaDu cell lines as HNC models with and without a hyperactive PIK3CA mutation (H1047R), respectively, regarding their possible distinct responses to the NSAIDs celecoxib and sulindac sulfide (SUS). Detroit562 cells exhibited relatively high PI3K/Akt pathway-dependent cyclooxygenase-2 (COX-2) expression, associated with cell proliferation. Celecoxib treatment restricted cell proliferation and upregulated endoplasmic reticulum (ER) stress-related markers, including GRP78, C/EBP-homologous protein, activating transcription factor 4, death receptor 5, and reactive oxygen species (ROS). These effects were much stronger in Detroit562 cells than in FaDu cells and were largely COX-2-independent. SUS treatment yielded similar results. Salubrinal (an ER stress inhibitor) and N-acetyl-L-cysteine (a ROS scavenger) prevented NSAID-induced ROS generation and ER stress, respectively, indicating crosstalk between ER and oxidative stress. In addition, celecoxib and/or SUS elevated cleaved caspase-3 levels, Bcl-2-associated X protein/Bcl-2-interacting mediator of cell death expression, and mitochondrial damage, which was more pronounced in Detroit562 than in FaDu cells. Salubrinal and N-acetyl-L-cysteine attenuated celecoxib-induced mitochondrial dysfunction. Collectively, our results suggest that celecoxib and SUS efficiently suppress activating PIK3CA mutation-harboring HNC progression by inducing ER and oxidative stress and mitochondrial dysfunction, leading to apoptotic cell death, further supporting NSAID treatment as a useful strategy for oncogenic PIK3CA-mutated HNC therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2024.116221DOI Listing

Publication Analysis

Top Keywords

mitochondrial dysfunction
12
celecoxib sulindac
8
sulindac sulfide
8
head neck
8
neck cancer
8
endoplasmic reticulum
8
reactive oxygen
8
oxygen species
8
detroit562 fadu
8
detroit562 cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!