A strong hydrogen bond bridging interface based on tannic acid for improving the performance of high-filled bamboo fibers/poly (butylene succinate-co-butylene adipate) (PBSA)biocomposites.

Int J Biol Macromol

Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China. Electronic address:

Published: May 2024

Natural plant fiber-reinforced bio-based polymer composites are widely attracting attention because of their economical, readily available, low carbon, and biodegradable, and showing promise in gradually replacing petroleum-based composites. Nevertheless, the fragile interfacial bonding between fiber and substrate hinders the progression of low-cost and abundant sustainable high-performance biocomposites. In this paper, a novel high-performance sustainable biocomposite was built by introducing a high density strong hydrogen-bonded bridging interface based on tannic acid (TA) between bamboo fibers (BFs) and PBSA. Through comprehensive analysis, this strategy endowed the biocomposites with better mechanical properties, thermal stability, dynamic thermo-mechanical properties and water resistance. The optimum performance of the composites was achieved when the TA concentration was 2 g/L. Tensile strength as well as modulus, flexural strength as well as modulus, and impact strength improved by 22 %, 10 %, 15 %, 35 %, and 25 % respectively. Additionally, the initial degradation temperature(T) and maximum degradation temperature(T) increased by 12.07 °C and 14.8 °C respectively. The maximum storage modulus(E'), room temperature E', and loss modulus(E")elevated by 199 %, 75 %, and 181 % respectively. Moreover, the water absorption rate decreased by 59 %. The strong hydrogen-bonded bridging interface serves as a novel model and theory for biocomposite interface engineering. At the same time, it offers a promising future for the development of high performance sustainable biocomposites with low cost and abundant biomass resources and contributes to their wide application in aerospace, automotive, biomedical and other field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.131611DOI Listing

Publication Analysis

Top Keywords

bridging interface
12
interface based
8
based tannic
8
tannic acid
8
strong hydrogen-bonded
8
hydrogen-bonded bridging
8
strength well
8
well modulus
8
degradation temperaturet
8
strong hydrogen
4

Similar Publications

Quantitative analysis of particle behavior constituting multiple coherent structures in liquid bridges.

J Colloid Interface Sci

January 2025

Department of Mechanical and Aerospace Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Chiba, Japan. Electronic address:

Hypothesis: Coherent structures by low-Stokes-number particles are induced within a closed flow, in which ordered flow regions known as Kolmogorov-Arnold-Moser (KAM) tori emerge. A variety of structures with different spatial characteristics has been predicted by varying the Stokes number, whereas the coexistence of structures in flow suspending various types of particles has not been hitherto demonstrated.

Experiments: Half-zone liquid bridges of O () are prepared as a closed system to induce thermocapillary-driven time-dependent flow under normal gravity conditions.

View Article and Find Full Text PDF

Single-Injection Composite Tracer Achieves Intraoperative Dual-Tracing and Precise Localization of Sentinel Lymph Nodes.

ACS Appl Mater Interfaces

January 2025

Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.

The use of dual-tracer contrast agents in clinical applications, such as sentinel lymph node (SLN) identification, offers significant advantages including enhanced accuracy, sensitivity, as well as comprehensive and multimodal visualization. In the current clinical practice, SLNs are typically marked prior to surgical resection by multiple and sequential injections of two tracers, the radioactive tracer and methylene blue (MB) dye. This imposes physical and psychological burden on patients and medical staff.

View Article and Find Full Text PDF

Neurotransmitter release is triggered in microseconds by the two C domains of the Ca sensor synaptotagmin-1 and by SNARE complexes, which form four-helix bundles that bridge the vesicle and plasma membranes. The synaptotagmin-1 CB domain binds to the SNARE complex via a 'primary interface', but the mechanism that couples Ca-sensing to membrane fusion is unknown. Widespread models postulate that the synaptotagmin-1 Ca-binding loops accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but these models do not seem compatible with SNARE binding through the primary interface, which orients the Ca-binding loops away from the fusion site.

View Article and Find Full Text PDF

Precise patterning of sensing materials, particularly the long-range-ordered assembly of micro/nanostructures, is pivotal for improving sensor performance, facilitating miniaturization, and enabling seamless integration. This paper examines the importance of interfacial confined assembly in sensor patterning, including gas-liquid and liquid-liquid confined assembly, wettability-assisted or microstructure-assisted solid-liquid interfacial confined assembly, and tip-induced confined assembly. The application of capillary bridge confined assembly technology in chemical sensors, flexible electronics, and optoelectronics is highlighted.

View Article and Find Full Text PDF

Rapid Synthesis of Carbon-Supported Ru-RuO₂ Heterostructures for Efficient Electrochemical Water Splitting.

Adv Sci (Weinh)

January 2025

Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California, 95064, USA.

Development of high-performance electrocatalysts for water splitting is crucial for a sustainable hydrogen economy. In this study, rapid heating of ruthenium(III) acetylacetonate by magnetic induction heating (MIH) leads to the one-step production of Ru-RuO₂/C nanocomposites composed of closely integrated Ru and RuO₂ nanoparticles. The formation of Mott-Schottky heterojunctions significantly enhances charge transfer across the Ru-RuO interface leading to remarkable electrocatalytic activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 m KOH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!