Although bioactive peptides enhancing bone healing have demonstrated effectiveness in treating bone defects, in vivo instability poses a challenge to their clinical application. Currently reported peptide delivery systems do not meet the demands of bone tissue repair regarding stability and peptide release efficacy. Herein, the self-assembling recombinant chimeric protein (Sbp5-2) is developed by genetic engineering with cell adhesion peptide RGD as the targeted peptide and a newly discovered scallop byssal-derived protein Sbp5-2 that can assemble into wet stable films as the structural domain. In vitro studies show that the Sbp5-2 film exhibits excellent extensibility and biocompatibility. In vitro and in vivo degradation experiments demonstrate that the film remains stable due to the layer-by-layer degradation mode, resulting in sustained delivery of RGD in situ for up to 4 weeks. Consequently, the film can effectively promote osteogenesis, which accelerates bone defect healing and the implants osseointegration. Cell-level studies further show that the film up-regulates the expression of genes and proteins (ALP, OCN, OSX, OPN, RUNX2, VEGF) associated with osteogenesis and angiogenesis. Overall, this novel protein film represents an intelligent platform for peptide immobilization, protection, and release through its self-assembly, dense structure, and degradation mode, providing a therapeutic strategy for bone repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.131636 | DOI Listing |
Acta Biomater
January 2025
Hainan Cancer Center and Tumor Institute, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China. Electronic address:
Angew Chem Int Ed Engl
January 2025
University of California, San Diego, Chemistry and Biochemistry, 9500 Gilman Drive, Urey Hall 4120, 92093, La Jolla, UNITED STATES OF AMERICA.
Membrane-forming phospholipids are generated in cells by enzymatic diacylation of non-amphiphilic polar head groups. Analogous non-enzymatic processes may have been relevant at the origin of life and could have practical utility in membrane synthesis. However, aqueous head group diacylation is challenging in the absence of enzymes.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China.
Despite significant progress in skin wound healing, it is still a challenge to construct multifunctional bioactive dressings based on a highly aligned protein fiber coated hydrogel matrix for antifibrosis skin wound regeneration that is indistinguishable to native skin. In this study, a "dual-wheel-driven" strategy is adopted to modify the surface of methacrylated gelatin (GelMA) hydrogel with highly aligned magnetic nanocomposites-protein fiber assemblies (MPF) consisting of photothermal responsive antibacteria superparamagnetic nanocomposites-fibrinogen (Fg) complexes as the building blocks. Whole-phase healing properties of the modified hydrogel dressing, GelMA-MPF (GMPF), stem from the integration of Fg protein with RGD peptide activity decorated on the surface of the antibacterial magnetic nanoactuator, facilitating facile and reproducible dressing preparation by self-assembly and involving biochemical, morphological, and biophysical cues.
View Article and Find Full Text PDFBiomaterials
April 2025
Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea; Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea. Electronic address:
The field of bone tissue engineering is vital due to increasing bone disorders and limitations of traditional grafts. Injectable hydrogels offer minimally invasive solutions but often lack mechanical integrity and biological functionality, including osteoinductive capacity and structural stability under physiological conditions. To address these issues, we propose a coacervate-based injectable adhesive hydrogel that utilizes the dual functionality of in situ photocrosslinking and osteoinductive amorphous calcium phosphate formation, both of which are activated simultaneously by visible light irradiation.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China. Electronic address:
In photodynamic therapy (PDT), reactive oxygen species (ROS) are key products that induce cell death, and increasing amount of ROS is a crucial way to enhance PDT efficacy. However, the generated ROS stimulates the transient receptor potential vanilloid 1 channel (TRPV1), which can be activated in the pain pathway and then exacerbate pain. Herein, we utilized arginine-glycine-aspartate (RGD) peptide-modified liposomes for encapsulation Chlorin e6 (Ce6) and capsazepine (Cz), a receptor antagonist of TRPV1, to prepare drug-loaded liposomes, RLCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!