Background: A prolonged repetitive transcranial magnetic stimulation (rTMS) treatment course could be beneficial for some patients experiencing major depressive episodes (MDE). We identified trajectories of rTMS response in depressive patients who received an extended rTMS treatment course and sought to determine which trajectories achieved the greatest benefit with a prolonged treatment course.
Method: We applied group-based trajectory modeling to a naturalistic dataset of depressive patients receiving a prolonged course of sequential bilateral rTMS (up to 51 treatment sessions) to the dorsolateral prefrontal cortex. Trajectories of the PHQ-9 with extended treatment courses were characterized, and we explored the association between baseline clinical characteristics and group membership using multinomial logistic regression.
Results: Among the 324 study participants, four trajectories were identified: "linear response, extended course" (N = 73; 22.5 %); "nonresponse" (N = 23; 7.1 %); "slowed response" (N = 159; 49.1 %); "rapid response, standard treatment length" (N = 69; 21.3 %). Only the "linear response, extended course" group showed considerable clinical improvement after receiving additional rTMS treatments. Greater baseline depressive symptoms were associated with linear response and non-response.
Conclusion: Our results confirmed the distinctive response trajectories in depressive patients receiving rTMS and further highlighted that prolonged rTMS treatment courses may be beneficial for a subset of patients with higher initial symptom levels and linear early treatment response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brs.2024.04.010 | DOI Listing |
Int J Mol Sci
January 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Spinal cord injury (SCI) can lead to devastating dysfunctions and complications, significantly impacting patients' quality of life and aggravating the burden of disease. Since the main pathological mechanism of SCI is the disruption of neuronal circuits, the primary therapeutic strategy for SCI involves reconstructing and activating circuits to restore neural signal transmission. Repetitive transcranial magnetic stimulation (rTMS), a noninvasive brain stimulation technique, can modulate the function or state of the nervous system by pulsed magnetic fields.
View Article and Find Full Text PDFNeurol Sci
January 2025
Department of Neurology, Baotou Central Hospital, Baotou, Inner Mongolia, China.
Objectives: Ataxia is a common symptom in patients with Cerebellar subtype of Multiple system atrophy (MSA-C), but effective treatments remain elusive. The present study aims to investigate whether repetitive transcranial magnetic stimulation (rTMS) over the bilateral cerebellum could relieve ataxia in patients with MSA-C.
Patients And Methods: This is a single-center, randomized and double-blind trial.
Eur Arch Psychiatry Clin Neurosci
January 2025
Department of Mental Health Prevention and Treatment, Shenyang Mental Health Center, No. 12, Jinfan Middle Road, Hunnan District, Shengyang, Liaoning Province, 110016, China.
J Neurophysiol
February 2025
Breathing Research and Therapeutics Center, Department of Physical Therapy, University of Florida, Gainesville, Florida, United States.
We present a case report of a 42-year-old female with post-West Nile virus meningoencephalitis who exhibited unique, long-latency diaphragm potentials evoked by transcranial and cervical magnetic stimulation after exposure to acute intermittent hypoxia (AIH). The subject was recruited for a study investigating AIH effects on respiratory motor function in healthy individuals. She had contracted West Nile virus infection 5 years before assessment that resulted in hospitalization and persistent allodynia but was not reported to the research team.
View Article and Find Full Text PDFCells
January 2025
Beijing Institute of Radiation Medicine, Beijing 100850, China.
Neuromodulation stands as a cutting-edge approach in the fields of neuroscience and therapeutic intervention typically involving the regulation of neural activity through physical and chemical stimuli. The purpose of this review is to provide an overview and evaluation of different neuromodulation techniques, anticipating a clearer understanding of the future developmental trajectories and the challenges faced within the domain of neuromodulation that can be achieved. This review categorizes neuromodulation techniques into genetic neuromodulation methods (including optogenetics, chemogenetics, sonogenetics, and magnetogenetics) and non-genetic neuromodulation methods (including deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, transcranial ultrasound stimulation, photobiomodulation therapy, infrared neuromodulation, electromagnetic stimulation, sensory stimulation therapy, and multi-physical-factor stimulation techniques).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!