ABCG2 and SLC1A5 functionally interact to rewire metabolism and confer a survival advantage to cancer cells under oxidative stress.

J Biol Chem

Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA. Electronic address:

Published: June 2024

ABCG2, a member of the ABC transporter superfamily, is overexpressed in many human tumors and has long been studied for its ability to export a variety of chemotherapeutic agents, thereby conferring a multidrug resistance (MDR) phenotype. However, several studies have shown that ABCG2 can also confer an MDR-independent survival advantage to tumor cells exposed to stress. While investigating the mechanism by which ABCG2 enhances survival in stressful milieus, we have identified a physical and functional interaction between ABCG2 and SLC1A5, a member of the solute transporter superfamily and the primary transporter of glutamine in cancer cells. This interaction was accompanied by increased glutamine uptake, increased glutaminolysis, and rewired cellular metabolism, as evidenced by an increase in key metabolic enzymes and alteration of glutamine-dependent metabolic pathways. Specifically, we observed an increase in glutamine metabolites shuttled to the TCA cycle, and an increase in the synthesis of glutathione, accompanied by a decrease in basal levels of reactive oxygen species and a marked increase in cell survival in the face of oxidative stress. Notably, the knockdown of SLC1A5 or depletion of exogenous glutamine diminished ABCG2-enhanced autophagy flux, further implicating this solute transporter in ABCG2-mediated cell survival. This is, to our knowledge, the first report of a functionally significant physical interaction between members of the two major transporter superfamilies. Moreover, these observations may underlie the protective role of ABCG2 in cancer cells under duress and suggest a novel role for ABCG2 in the regulation of metabolism in normal and diseased states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11131071PMC
http://dx.doi.org/10.1016/j.jbc.2024.107299DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
abcg2 slc1a5
8
survival advantage
8
oxidative stress
8
transporter superfamily
8
solute transporter
8
cell survival
8
role abcg2
8
abcg2
7
survival
5

Similar Publications

EZH2 inhibition induces pyroptosis via RHA-mediated S100A9 overexpression in myelodysplastic syndromes.

Exp Hematol Oncol

January 2025

Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.

View Article and Find Full Text PDF

Detection of early relapse in multiple myeloma patients.

Cell Div

January 2025

Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.

Background: Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times.

View Article and Find Full Text PDF

With the progress of atherosclerosis (AS), the arterial lumen stenosis and compact plaque structure, the thickening intima and the narrow gaps between endothelial cells significantly limit the penetration efficiency of nanoprobe to plaque, weakening the imaging sensitivity and therapy efficiency. Thus, in this study, a HO-NIR dual-mode nanomotor, Gd-doped mesoporous carbon nanoparticles/Pt with rapamycin (RAPA) loading and AntiCD36 modification (Gd-MCNs/Pt-RAPA-AC) was constructed. The asymmetric deposition of Pt on Gd-MCNs catalyzed HO at the inflammatory site to produce O, which could promote the self-motion of the nanomotor and ease inflammation microenvironment of AS plaque.

View Article and Find Full Text PDF

Carcinoembryonic antigen (CEA) and C-reactive protein (CRP) are biomacromolecules known as cancer and inflammatory markers. Thus, they play a crucial role in early cancer diagnosis, post-treatment recurrence detection, and tumor risk assessment. This paper describes the development of an ultrasensitive and selective imprinted paper-based analytical device (PAD) as impedance sensor for determination of CEA and CRP in serum samples for point-of-care testing (POCT).

View Article and Find Full Text PDF

Background: Diseases are often caused by multiple factors, angiogenesis-related genes (ARGs) have been shown to be associated with cancer, however, their role in colon cancer had not been fully explored. This study investigated potential biomarkers based on ARGs to improve prognosis and treatment effect in colon cancer.

Methods: ARGs associated with colon cancer prognosis were identified using Cox regression analysis and LASSO analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!