Purpose: Epilepsy is a chronic brain dysfunction characterized by recurrent epileptic seizures. Rapamycin is a naturally occurring macrolide from Streptomyces hygroscopicus, and rapamycin may provide a protective effect on the nervous system by affecting mTOR. Therefore, we investigated the pharmacologic mechanism of rapamycin treating epilepsy through bioinformatics analysis, cellular experiments and supercomputer simulation.
Methods: Bioinformatics analysis was used to analyze targets of rapamycin treating epilepsy. We established epilepsy cell model by HT22 cells. RT-qPCR, WB and IF were used to verify the effects of rapamycin on mTOR at gene level and protein level. Computer simulations were used to model and evaluate the stability of rapamycin binding to mTOR protein.
Results: Bioinformatics indicated mTOR played an essential role in signaling pathways of cell growth and cell metabolism. Cellular experiments showed that rapamycin could promote cell survival, and rapamycin did not have an effect on mRNA expression of mTOR. However, rapamycin was able to significantly inhibit the phosphorylation of mTOR at protein level. Computer simulations indicated that rapamycin was involved in the treatment of epilepsy through regulating phosphorylation of mTOR at protein level.
Conclusion: We found that rapamycin was capable of promoting the survival of epilepsy cells by inhibiting the phosphorylation of mTOR at protein level, and rapamycin did not have an effect on mRNA expression of mTOR. In addition to the traditional study that rapamycin affects mTORC1 complex by acting on FKBP12, this study found rapamycin could also directly block the phosphorylation of mTOR, therefore affecting the assembly of mTORC1 complex and mTOR signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuint.2024.105746 | DOI Listing |
Mar Drugs
December 2024
Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
The objective of this study was to examine whether fucosterol, a phytosterol of marine algae, could ameliorate skeletal muscle atrophy in tumor necrosis factor-alpha (TNF-α)-treated C2C12 myotubes and in immobilization-induced C57BL/6J mice. Male C57BL6J mice were immobilized for 1 week to induce skeletal muscle atrophy. Following immobilization, the mice were administrated orally with saline or fucosterol (10 or 30 mg/kg/day) for 1 week.
View Article and Find Full Text PDFMol Med
December 2024
Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Chonnam National University Hospital, 42 Jaebong-Ro, Dong-Gu, Gwangju, 61469, Republic of Korea.
Background: Recent studies have identified hearing loss (HL) as a primary risk factor for Alzheimer's disease (AD) onset. However, the mechanisms linking HL to AD are not fully understood. This study explored the effects of drug-induced hearing loss (DIHL) on the expression of proteins associated with AD progression in mouse models.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
December 2024
School of Public Health, Bengbu Medical University, Bengbu 233000, China.
Objectives: To investigate the mechanism of luteolin for inhibiting proliferation of lung cancer A549 cells.
Methods: A549 cells treated with different concentrations of luteolin for 48 h were evaluated for changes in cell viability, proliferation, reactive oxygen species (ROS) production and apoptosis using MTT assay, plate cloning assay, EdU staining, DCFH-DA assay and Hoechst33258 staining. The changes in cell autophagy were examined with MDC staining, and the expressions of apoptosis-related proteins (Bax, Bcl-2, and cleaved caspase-9), autophagy-related proteins (LC3B, Beclin 1, and P62), AKT/mTOR pathway proteins, and HO-1 protein were detected using Western blotting.
Toxicol Appl Pharmacol
December 2024
Department of Respiratory Medicine, China-Japan Union Hospital of Jilin University, Changchun 130000, China. Electronic address:
Abnormal proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) leading to pulmonary vascular remodeling are critical factors in the development of pulmonary hypertension (pH). Dehydrodiisoeugenol (DEH), a natural phenolic compound, is renowned for its antioxidant and anti-inflammatory properties. However, the precise role and mechanisms of DEH in PH remain unclear.
View Article and Find Full Text PDFOpen Life Sci
December 2024
Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, No. 29, Tongren Road, West of the City, Xining, 810000, Qinghai, China.
Bladder cancer (BC) is the tenth most common tumor worldwide, characterized by high incidence rates and mortality. This study aimed to explore the role of Methyltransferase like 13 (METTL13) in BC cells. J82 and T24 cells were cultured for experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!