AapoA-I, the main protein of high-density lipoprotein, plays a key role in the biogenesis and atheroprotective properties of high-density lipoprotein. We showed previously that a naturally occurring apoA-I mutation, L178P, induces major defects in protein's structural integrity and functions that may underlie the increased cardiovascular risk observed in carriers of the mutation. Here, a library of marketed drugs (956 compounds) was screened against apoA-I[L178P] to identify molecules that can stabilize the normal conformation of apoA-I. Screening was performed by the thermal shift assay in the presence of fluorescent dye SYPRO Orange. As an orthogonal assay, we monitored the change in fluorescence intensity of 8-anilinonaphthalene-1-sulfonic acid upon binding on hydrophobic sites on apoA-I. Screening identified four potential structure correctors. Subsequent analysis of the concentration-dependent effect of these compounds on secondary structure and thermodynamic stability of WT apoA-I and apoA-I[L178P] (assessed by thermal shift assay and circular dichroism spectroscopy), as well as on macrophage viability, narrowed the potential structure correctors to two, the drugs atorvastatin and bexarotene. Functional analysis showed that these two compounds can restore the defective capacity of apoA-I[L178P] to promote cholesterol removal from macrophages, an important step for atheroprotection. Computational docking suggested that both drugs target a positively charged cavity in apoA-I, formed between helix 1/2 and helix 5, and make extensive interactions that could underlie thermodynamic stabilization. Overall, our findings indicate that small molecules can correct defective apoA-I structure and function and may lead to novel therapeutic approaches for apoA-I-related dyslipidemias and increased cardiovascular risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106541 | PMC |
http://dx.doi.org/10.1016/j.jlr.2024.100543 | DOI Listing |
Phys Chem Chem Phys
January 2025
Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
Mesoporous silica exhibits a diverse range of applications owing to its pore structure and inter-pore correlation. Consequently, quantitative characterization of its mesoscopic structure is extremely crucial to reciprocate its potential applications. In this work, we utilized the chemical and aerosol routes to successfully synthesize granular, porous silica with an average pore size in the range of ∼5-10 nm and different degrees of structural correlation among its pores.
View Article and Find Full Text PDFChem Biodivers
January 2025
St Xavier's College, Kolkata, Department of Chemistry, 30, Mother teresa Sarani, Kol-16, 700016, Kolkata, INDIA.
Amino-quinolines are potential candidates that may provide some insight into the current chemotherapeutic research due to their demonstrated anti-cancer activity. This led us to synthesize and explore a new amino-azo-quinoline ligand H2L 1 and its square planar nickel(II) complexes [Ni(HL)(OAc)], 2 and [Ni(HL)Cl], 3 and the structures were determined by SCXRD. Theoretical investigation of redox orbitals of the complexes discloses that the reduction process is due to ligand reduction whereas both metal and ligand are contributing towards oxidation.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Electronics and Communication Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh.
Blood components play a crucial role in maintaining human health and accurately detecting them is essential for medical diagnostics. A cutting-edge sensor utilizing PCF revealed to precisely identify a wide range of blood components with WBCs (white blood cells), RBCs (red blood cells), HB (hemoglobin), platelets, and plasma. A numerical analysis was performed using COMSOL Multiphysics software to assess the capabilities of the sensor.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Diabetes affects approximately 422 million people worldwide, leading to 1.5 million deaths annually and causing severe complications such as kidney failure, neuropathy, and cardiovascular disease. Aldose reductase (AR), a key enzyme in the polyol pathway, is an important therapeutic target for managing these complications.
View Article and Find Full Text PDFDiscov Ment Health
January 2025
Department of Sociology and Social Work, Faculty of Social Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
Background: Mental health associations with students' academic outcomes are critical for students' well-being and excellent performance, particularly among tertiary students in their educational trajectory. This study investigated the relationship between mental health incidence and academic performance among university students in a public university in Ghana. Additionally, we study students' level of mental health awareness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!